Do you want to publish a course? Click here

Markov Chain Monte Carlo with Neural Network Surrogates: Application to Contaminant Source Identification

69   0   0.0 ( 0 )
 Added by Zitong Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Subsurface remediation often involves reconstruction of contaminant release history from sparse observations of solute concentration. Markov Chain Monte Carlo (MCMC), the most accurate and general method for this task, is rarely used in practice because of its high computational cost associated with multiple solves of contaminant transport equations. We propose an adaptive MCMC method, in which a transport model is replaced with a fast and accurate surrogate model in the form of a deep convolutional neural network (CNN). The CNN-based surrogate is trained on a small number of the transport model runs based on the prior knowledge of the unknown release history. Thus reduced computational cost allows one to reduce the sampling error associated with construction of the approximate likelihood function. As all MCMC strategies for source identification, our method has an added advantage of quantifying predictive uncertainty and accounting for measurement errors. Our numerical experiments demonstrate the accuracy comparable to that of MCMC with the forward transport model, which is obtained at a fraction of the computational cost of the latter.



rate research

Read More

In this paper, we study the asymptotic variance of sample path averages for inhomogeneous Markov chains that evolve alternatingly according to two different $pi$-reversible Markov transition kernels $P$ and $Q$. More specifically, our main result allows us to compare directly the asymptotic variances of two inhomogeneous Markov chains associated with different kernels $P_i$ and $Q_i$, $iin{0,1}$, as soon as the kernels of each pair $(P_0,P_1)$ and $(Q_0,Q_1)$ can be ordered in the sense of lag-one autocovariance. As an important application, we use this result for comparing different data-augmentation-type Metropolis-Hastings algorithms. In particular, we compare some pseudo-marginal algorithms and propose a novel exact algorithm, referred to as the random refreshment algorithm, which is more efficient, in terms of asymptotic variance, than the Grouped Independence Metropolis-Hastings algorithm and has a computational complexity that does not exceed that of the Monte Carlo Within Metropolis algorithm.
An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimising a Stein discrepancy between the empirical measure and the target and, hence, require the solution of a non-convex optimisation problem to obtain each new point. This paper removes the need to solve this optimisation problem by, instead, selecting each new point based on a Markov chain sample path. This significantly reduces the computational cost of Stein Points and leads to a suite of algorithms that are straightforward to implement. The new algorithms are illustrated on a set of challenging Bayesian inference problems, and rigorous theoretical guarantees of consistency are established.
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both non-interacting PMCMC samplers, and a single PMCMC sampler with an equivalent memory and computational budget. An additional advantage of the iPMCMC method is that it is suitable for distributed and multi-core architectures.
A novel class of non-reversible Markov chain Monte Carlo schemes relying on continuous-time piecewise-deterministic Markov Processes has recently emerged. In these algorithms, the state of the Markov process evolves according to a deterministic dynamics which is modified using a Markov transition kernel at random event times. These methods enjoy remarkable features including the ability to update only a subset of the state components while other components implicitly keep evolving and the ability to use an unbiased estimate of the gradient of the log-target while preserving the target as invariant distribution. However, they also suffer from important limitations. The deterministic dynamics used so far do not exploit the structure of the target. Moreover, exact simulation of the event times is feasible for an important yet restricted class of problems and, even when it is, it is application specific. This limits the applicability of these techniques and prevents the development of a generic software implementation of them. We introduce novel MCMC methods addressing these shortcomings. In particular, we introduce novel continuous-time algorithms relying on exact Hamiltonian flows and novel non-reversible discrete-time algorithms which can exploit complex dynamics such as approximate Hamiltonian dynamics arising from symplectic integrators while preserving the attractive features of continuous-time algorithms. We demonstrate the performance of these schemes on a variety of applications.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is available, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا