Do you want to publish a course? Click here

Piecewise-Deterministic Markov Chain Monte Carlo

80   0   0.0 ( 0 )
 Added by Paul Vanetti
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

A novel class of non-reversible Markov chain Monte Carlo schemes relying on continuous-time piecewise-deterministic Markov Processes has recently emerged. In these algorithms, the state of the Markov process evolves according to a deterministic dynamics which is modified using a Markov transition kernel at random event times. These methods enjoy remarkable features including the ability to update only a subset of the state components while other components implicitly keep evolving and the ability to use an unbiased estimate of the gradient of the log-target while preserving the target as invariant distribution. However, they also suffer from important limitations. The deterministic dynamics used so far do not exploit the structure of the target. Moreover, exact simulation of the event times is feasible for an important yet restricted class of problems and, even when it is, it is application specific. This limits the applicability of these techniques and prevents the development of a generic software implementation of them. We introduce novel MCMC methods addressing these shortcomings. In particular, we introduce novel continuous-time algorithms relying on exact Hamiltonian flows and novel non-reversible discrete-time algorithms which can exploit complex dynamics such as approximate Hamiltonian dynamics arising from symplectic integrators while preserving the attractive features of continuous-time algorithms. We demonstrate the performance of these schemes on a variety of applications.

rate research

Read More

In this article we propose a novel MCMC method based on deterministic transformations T: X x D --> X where X is the state-space and D is some set which may or may not be a subset of X. We refer to our new methodology as Transformation-based Markov chain Monte Carlo (TMCMC). One of the remarkable advantages of our proposal is that even if the underlying target distribution is very high-dimensional, deterministic transformation of a one-dimensional random variable is sufficient to generate an appropriate Markov chain that is guaranteed to converge to the high-dimensional target distribution. Apart from clearly leading to massive computational savings, this idea of deterministically transforming a single random variable very generally leads to excellent acceptance rates, even though all the random variables associated with the high-dimensional target distribution are updated in a single block. Since it is well-known that joint updating of many random variables using Metropolis-Hastings (MH) algorithm generally leads to poor acceptance rates, TMCMC, in this regard, seems to provide a significant advance. We validate our proposal theoretically, establishing the convergence properties. Furthermore, we show that TMCMC can be very effectively adopted for simulating from doubly intractable distributions. TMCMC is compared with MH using the well-known Challenger data, demonstrating the effectiveness of of the former in the case of highly correlated variables. Moreover, we apply our methodology to a challenging posterior simulation problem associated with the geostatistical model of Diggle et al. (1998), updating 160 unknown parameters jointly, using a deterministic transformation of a one-dimensional random variable. Remarkable computational savings as well as good convergence properties and acceptance rates are the results.
We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. While adaptive MCMC methods usually update a parametric proposal kernel with a global rule, AIMM locally adapts a semiparametric kernel. AIMM is based on an independent Metropolis-Hastings proposal distribution which takes the form of a finite mixture of Gaussian distributions. Central to this approach is the idea that the proposal distribution adapts to the target by locally adding a mixture component when the discrepancy between the proposal mixture and the target is deemed to be too large. As a result, the number of components in the mixture proposal is not fixed in advance. Theoretically, we prove that there exists a process that can be made arbitrarily close to AIMM and that converges to the correct target distribution. We also illustrate that it performs well in practice in a variety of challenging situations, including high-dimensional and multimodal target distributions.
142 - Guanyu Hu , HaiYing Wang 2020
Markov Chain Monte Carlo (MCMC) requires to evaluate the full data likelihood at different parameter values iteratively and is often computationally infeasible for large data sets. In this paper, we propose to approximate the log-likelihood with subsamples taken according to nonuniform subsampling probabilities, and derive the most likely optimal (MLO) subsampling probabilities for better approximation. Compared with existing subsampled MCMC algorithm with equal subsampling probabilities, our MLO subsampled MCMC has a higher estimation efficiency with the same subsampling ratio. We also derive a formula using the asymptotic distribution of the subsampled log-likelihood to determine the required subsample size in each MCMC iteration for a given level of precision. This formula is used to develop an adaptive version of the MLO subsampled MCMC algorithm. Numerical experiments demonstrate that the proposed method outperforms the uniform subsampled MCMC.
In Bayesian inference, predictive distributions are typically in the form of samples generated via Markov chain Monte Carlo (MCMC) or related algorithms. In this paper, we conduct a systematic analysis of how to make and evaluate probabilistic forecasts from such simulation output. Based on proper scoring rules, we develop a notion of consistency that allows to assess the adequacy of methods for estimating the stationary distribution underlying the simulation output. We then provide asymptotic results that account for the salient features of Bayesian posterior simulators, and derive conditions under which choices from the literature satisfy our notion of consistency. Importantly, these conditions depend on the scoring rule being used, such that the choices of approximation method and scoring rule are intertwined. While the logarithmic rule requires fairly stringent conditions, the continuous ranked probability score (CRPS) yields consistent approximations under minimal assumptions. These results are illustrated in a simulation study and an economic data example. Overall, mixture-of-parameters approximations which exploit the parametric structure of Bayesian models perform particularly well. Under the CRPS, the empirical distribution function is a simple and appealing alternative option.
358 - Ning Dai , Galin L. Jones 2017
Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyers method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا