No Arabic abstract
We present Neutron Star Interior Composition Explorer X-ray and Arcminute Microkelvin Imager Large Array radio observations of a rapid hard-to-soft state transition in the black hole X-ray transient MAXI J1820+070. During the transition from the hard state to the soft state a switch between two particular types of quasiperiodic oscillations (QPOs) was seen in the X-ray power density spectra, from type-C to type-B, along with a drop in the strength of the broadband X-ray variability and a brief flare in the 7-12 keV band. Soon after this switch (~1.5-2.5 hr) a strong radio flare was observed that corresponded to the launch of superluminal ejecta. Although hints of a connection between QPO transitions and radio flares have been seen in other black hole X-ray transients, our observations constitute the strongest observational evidence to date for a link between the appearance of type-B QPOs and the launch of discrete jet ejections.
We study the jet in the hard state of the accreting black-hole binary MAXI J1820+070. From the available radio-to-optical spectral and variability data, we put strong constraints on the jet parameters. We find while it is not possible to uniquely determine the jet Lorentz factor from the spectral and variability properties alone, we can estimate the jet opening angle ($1.5pm 1$ deg), the distance at which the jet starts emitting synchrotron radiation ($sim$3$times10^{10}$cm), the magnetic field strength there ($sim$10$^4$G), and the maximum Lorentz factor of the synchrotron-emitting electrons ($sim$110--150) with relatively low uncertainty, as they depend weakly on the bulk Lorentz factor. We find the breaks in the variability power spectra from radio to sub-mm are consistent with variability damping over the time scale equal to the travel time along the jet at any Lorentz factor. This factor can still be constrained by the electron-positron pair production rate within the jet base, which we calculate based on the observed X-ray/soft gamma-ray spectrum, and the jet power, required to be less than the accretion power. The minimum ($sim$1.5) and maximum ($sim$4.5) Lorentz factors correspond to the dominance of pairs and ions, and the minimum and maximum jet power, respectively. We estimate the magnetic flux threading the black hole and find the jet can be powered by the Blandford-Znajek mechanism in a magnetically-arrested flow accretion flow. We point out the similarity of our derived formalism to that of core shifts, observed in extragalactic radio sources.
How a black hole accretes matter and how this process is regulated are fundamental but unsolved questions in astrophysics. In transient black-hole binaries, a lot of mass stored in an accretion disk is suddenly drained to the central black hole because of thermal-viscous instability. This phenomenon is called an outburst and is observable at various wavelengths (Frank et al., 2002). During the outburst, the accretion structure in the vicinity of a black hole shows dramatical transitions from a geometrically-thick hot accretion flow to a geometrically-thin disk, and the transition is observed at X-ray wavelengths (Remillard, McClintock, 2006; Done et al., 2007). However, how that X-ray transition occurs remains a major unsolved problem (Dunn et al., 2008). Here we report extensive optical photometry during the 2018 outburst of ASASSN-18ey (MAXI J1820$+$070), a black-hole binary at a distance of 3.06 kpc (Tucker et al., 2018; Torres et al., 2019) containing a black hole and a donor star of less than one solar mass. We found optical large-amplitude periodic variations similar to superhumps which are well observed in a subclass of white-dwarf binaries (Kato et al., 2009). In addition, the start of the stage transition of the optical variations was observed 5 days earlier than the X-ray transition. This is naturally explained on the basis of our knowledge regarding white dwarf binaries as follows: propagation of the eccentricity inward in the disk makes an increase of the accretion rate in the outer disk, resulting in huge mass accretion to the black hole. Moreover, we provide the dynamical estimate of the binary mass ratio by using the optical periodic variations for the first time in transient black-hole binaries. This paper opens a new window to measure black-hole masses accurately by systematic optical time-series observations which can be performed even by amateur observers.
A black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics. Here we report the unusual decrease of the reflection fraction in MAXI J1820+070, which is the ratio of the coronal intensity illuminating the disk to the coronal intensity reaching the observer, as the corona is observed to contrast during the decay phase. We postulate a jet-like corona model, in which the corona can be understood as a standing shock where the material flowing through. In this dynamical scenario, the decrease of the reflection fraction is a signature of the coronas bulk velocity. Our findings suggest that as the corona is observed to get closer to the black hole, the coronal material might be outflowing faster.
Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI,J1820+070, providing a model-independent distance to the source. Our parallax measurement of ($0.348pm0.033$) mas for MAXI J1820+070 translates to a distance of ($2.96pm0.33$) kpc. This distance implies that the source reached ($15pm3)%$ of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity and the mass of the black hole in MAXI J1820+070 to be ($63pm3)^{circ}$, ($0.89pm0.09)c$ and ($9.2pm1.3) M_{odot}$, respectively.
We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed with the source close to the quiescent state and before the onset of renewed activity in August 2019. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find $v_{rot} sin i = 84 pm 5$ km s$^{-1}$ ($1!-!sigma$), which implies a donor to black-hole mass ratio $q = {M_2}/{M_1} = 0.072 pm 0.012$ for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are $M_1 = (5.95 pm 0.22)sin ^{-3}i$ $M_odot$ and $M_2 = (0.43 pm 0.08) sin^{-3}i$ $M_odot$. The use of $q$, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to $66^{circ} < i < 81^{circ}$. These values lead to 95% confidence level limits on the masses of $5.73 <M_1(M_odot) < 8.34$ and $0.28 < M_2(M_odot) < 0.77$. Adopting instead the $63 pm 3^{circ}$ orientation angle of the radio jet as the binary inclination leads to $M_1 = 8.48^{+0.79}_{-0.72} M_odot$ and $M_2 = 0.61^{+0.13}_{-0.12} M_odot$ ($1!-!sigma$).