Do you want to publish a course? Click here

Optical Variability Correlated with X-ray Spectral Transition in the Black-Hole Transient ASASSN-18ey = MAXI J1820+070

115   0   0.0 ( 0 )
 Added by Keisuke Isogai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

How a black hole accretes matter and how this process is regulated are fundamental but unsolved questions in astrophysics. In transient black-hole binaries, a lot of mass stored in an accretion disk is suddenly drained to the central black hole because of thermal-viscous instability. This phenomenon is called an outburst and is observable at various wavelengths (Frank et al., 2002). During the outburst, the accretion structure in the vicinity of a black hole shows dramatical transitions from a geometrically-thick hot accretion flow to a geometrically-thin disk, and the transition is observed at X-ray wavelengths (Remillard, McClintock, 2006; Done et al., 2007). However, how that X-ray transition occurs remains a major unsolved problem (Dunn et al., 2008). Here we report extensive optical photometry during the 2018 outburst of ASASSN-18ey (MAXI J1820$+$070), a black-hole binary at a distance of 3.06 kpc (Tucker et al., 2018; Torres et al., 2019) containing a black hole and a donor star of less than one solar mass. We found optical large-amplitude periodic variations similar to superhumps which are well observed in a subclass of white-dwarf binaries (Kato et al., 2009). In addition, the start of the stage transition of the optical variations was observed 5 days earlier than the X-ray transition. This is naturally explained on the basis of our knowledge regarding white dwarf binaries as follows: propagation of the eccentricity inward in the disk makes an increase of the accretion rate in the outer disk, resulting in huge mass accretion to the black hole. Moreover, we provide the dynamical estimate of the binary mass ratio by using the optical periodic variations for the first time in transient black-hole binaries. This paper opens a new window to measure black-hole masses accurately by systematic optical time-series observations which can be performed even by amateur observers.



rate research

Read More

MAXI J1820+070 is a low-mass black hole X-ray binary system with high luminosity in both optical and X-ray bands during the outburst periods. We present extensive photometry in X-ray, ultraviolet, and optical bands, as well as densely-cadenced optical spectra, covering the phase from the beginning of optical outburst to $sim$550 days. During the rebrightening process, the optical emission preceded the X-ray by 20.80 $pm$ 2.85 days. The spectra are characterized by blue continua and emission features of Balmer series, He I, He II lines and broad Bowen blend. The pseudo equivalent width (pEW) of emission lines are found to show anticorrelations with the X-ray flux measured at comparable phases, which is due to the increased suppression by the optical continuum. At around the X-ray peak, the full width at half maximums (FWHMs) of H$_{beta}$ and He II $lambda$4686 tend to stabilize at 19.4 Angstrom and 21.8 Angstrom, which corresponds to the line forming region at a radius of 1.7 and 1.3 R_sun within the disk. We further analyzed the absolute fluxes of the lines and found that the fluxes of H$_{beta}$ and He II $lambda$4686 show positive correlations with the X-ray flux, favoring that the irradiation model is responsible for the optical emission. However, the fact that X-ray emission experiences a dramatic flux drop at t$sim$200 days after the outburst, while the optical flux only shows little variations suggests that additional energy such as viscous energy may contribute to the optical radiation in addition to the X-ray irradiation.
Aims. The optical emission of black hole transients increases by several magnitudes during the X-ray outbursts. Whether the extra light arises from the X-ray heated outer disc, from the inner hot accretion flow, or from the jet is currently debated. Optical polarisation measurements are able to distinguish the relative contributions of these components. Methods. We present the results of BVR polarisation measurements of the black hole X-ray binary MAXI J1820+070 during the period of March-April 2018. Results. We detect small, $sim$0.7%, but statistically significant polarisation, part of which is of interstellar origin. Depending on the interstellar polarisation estimate, the intrinsic polarisation degree of the source is between $sim$0.3% and 0.7%, and the polarisation position angle is between $sim10deg-30deg$. We show that the polarisation increases after MJD 58222 (2018 April 14). The change is of the order of 0.1% and is most pronounced in the R band. The change of the source Stokes parameters occurs simultaneously with the drop of the observed V-band flux and a slow softening of the X-ray spectrum. The Stokes vectors of intrinsic polarisation before and after the drop are parallel, at least in the V and R filters. Conclusions. We suggest that the increased polarisation is due to the decreasing contribution of the non-polarized component, which we associate with the the hot flow or jet emission. The low polarisation can result from the tangled geometry of the magnetic field or from the Faraday rotation in the dense, ionised, and magnetised medium close to the black hole. The polarized optical emission is likely produced by the irradiated disc or by scattering of its radiation in the optically thin outflow.
We present Neutron Star Interior Composition Explorer X-ray and Arcminute Microkelvin Imager Large Array radio observations of a rapid hard-to-soft state transition in the black hole X-ray transient MAXI J1820+070. During the transition from the hard state to the soft state a switch between two particular types of quasiperiodic oscillations (QPOs) was seen in the X-ray power density spectra, from type-C to type-B, along with a drop in the strength of the broadband X-ray variability and a brief flare in the 7-12 keV band. Soon after this switch (~1.5-2.5 hr) a strong radio flare was observed that corresponded to the launch of superluminal ejecta. Although hints of a connection between QPO transitions and radio flares have been seen in other black hole X-ray transients, our observations constitute the strongest observational evidence to date for a link between the appearance of type-B QPOs and the launch of discrete jet ejections.
We study the jet in the hard state of the accreting black-hole binary MAXI J1820+070. From the available radio-to-optical spectral and variability data, we put strong constraints on the jet parameters. We find while it is not possible to uniquely determine the jet Lorentz factor from the spectral and variability properties alone, we can estimate the jet opening angle ($1.5pm 1$ deg), the distance at which the jet starts emitting synchrotron radiation ($sim$3$times10^{10}$cm), the magnetic field strength there ($sim$10$^4$G), and the maximum Lorentz factor of the synchrotron-emitting electrons ($sim$110--150) with relatively low uncertainty, as they depend weakly on the bulk Lorentz factor. We find the breaks in the variability power spectra from radio to sub-mm are consistent with variability damping over the time scale equal to the travel time along the jet at any Lorentz factor. This factor can still be constrained by the electron-positron pair production rate within the jet base, which we calculate based on the observed X-ray/soft gamma-ray spectrum, and the jet power, required to be less than the accretion power. The minimum ($sim$1.5) and maximum ($sim$4.5) Lorentz factors correspond to the dominance of pairs and ions, and the minimum and maximum jet power, respectively. We estimate the magnetic flux threading the black hole and find the jet can be powered by the Blandford-Znajek mechanism in a magnetically-arrested flow accretion flow. We point out the similarity of our derived formalism to that of core shifts, observed in extragalactic radio sources.
We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed with the source close to the quiescent state and before the onset of renewed activity in August 2019. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find $v_{rot} sin i = 84 pm 5$ km s$^{-1}$ ($1!-!sigma$), which implies a donor to black-hole mass ratio $q = {M_2}/{M_1} = 0.072 pm 0.012$ for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are $M_1 = (5.95 pm 0.22)sin ^{-3}i$ $M_odot$ and $M_2 = (0.43 pm 0.08) sin^{-3}i$ $M_odot$. The use of $q$, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to $66^{circ} < i < 81^{circ}$. These values lead to 95% confidence level limits on the masses of $5.73 <M_1(M_odot) < 8.34$ and $0.28 < M_2(M_odot) < 0.77$. Adopting instead the $63 pm 3^{circ}$ orientation angle of the radio jet as the binary inclination leads to $M_1 = 8.48^{+0.79}_{-0.72} M_odot$ and $M_2 = 0.61^{+0.13}_{-0.12} M_odot$ ($1!-!sigma$).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا