Do you want to publish a course? Click here

Enabling AI in Future Wireless Networks: A Data Life Cycle Perspective

88   0   0.0 ( 0 )
 Added by Dinh Nguyen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent years have seen rapid deployment of mobile computing and Internet of Things (IoT) networks, which can be mostly attributed to the increasing communication and sensing capabilities of wireless systems. Big data analysis, pervasive computing, and eventually artificial intelligence (AI) are envisaged to be deployed on top of the IoT and create a new world featured by data-driven AI. In this context, a novel paradigm of merging AI and wireless communications, called Wireless AI that pushes AI frontiers to the network edge, is widely regarded as a key enabler for future intelligent network evolution. To this end, we present a comprehensive survey of the latest studies in wireless AI from the data-driven perspective. Specifically, we first propose a novel Wireless AI architecture that covers five key data-driven AI themes in wireless networks, including Sensing AI, Network Device AI, Access AI, User Device AI and Data-provenance AI. Then, for each data-driven AI theme, we present an overview on the use of AI approaches to solve the emerging data-related problems and show how AI can empower wireless network functionalities. Particularly, compared to the other related survey papers, we provide an in-depth discussion on the Wireless AI applications in various data-driven domains wherein AI proves extremely useful for wireless network design and optimization. Finally, research challenges and future visions are also discussed to spur further research in this promising area.



rate research

Read More

In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges corresponding to each KET. The unique RM challenges in 6G necessitate the transformation of existing optimization-based solutions to artificial intelligence/machine learning-empowered solutions. In the sequel, we formulate a joint network selection and subchannel allocation problem for 6G multi-band network that provides both further enhanced mobile broadband (FeMBB) and extreme ultra reliable low latency communication (eURLLC) services to the terrestrial and aerial users. Our solution highlights the efficacy of multi-band network and demonstrates the robustness of dueling deep Q-learning in obtaining efficient RM solution with faster convergence rate compared to deep-Q network and double deep Q-network algorithms.
292 - Yifei Shen , Jun Zhang , S.H. Song 2021
Resource management plays a pivotal role in wireless networks, which, unfortunately, leads to challenging NP-hard problems. Artificial Intelligence (AI), especially deep learning techniques, has recently emerged as a disruptive technology to solve such challenging problems in a real-time manner. However, although promising results have been reported, practical design guidelines and performance guarantees of AI-based approaches are still missing. In this paper, we endeavor to address two fundamental questions: 1) What are the main advantages of AI-based methods compared with classical techniques; and 2) Which neural network should we choose for a given resource management task. For the first question, four advantages are identified and discussed. For the second question, emph{optimality gap}, i.e., the gap to the optimal performance, is proposed as a measure for selecting model architectures, as well as, for enabling a theoretical comparison between different AI-based approaches. Specifically, for $K$-user interference management problem, we theoretically show that graph neural networks (GNNs) are superior to multi-layer perceptrons (MLPs), and the performance gap between these two methods grows with $sqrt{K}$.
A plethora of demanding services and use cases mandate a revolutionary shift in the management of future wireless network resources. Indeed, when tight quality of service demands of applications are combined with increased complexity of the network, legacy network management routines will become unfeasible in 6G. Artificial Intelligence (AI) is emerging as a fundamental enabler to orchestrate the network resources from bottom to top. AI-enabled radio access and AI-enabled core will open up new opportunities for automated configuration of 6G. On the other hand, there are many challenges in AI-enabled networks that need to be addressed. Long convergence time, memory complexity, and complex behaviour of machine learning algorithms under uncertainty as well as highly dynamic channel, traffic and mobility conditions of the network contribute to the challenges. In this paper, we survey the state-of-art research in utilizing machine learning techniques in improving the performance of wireless networks. In addition, we identify challenges and open issues to provide a roadmap for the researchers.
Unmanned aerial vehicles (UAVs) are widely deployed to enhance the wireless network capacity and to provide communication services to mobile users beyond the infrastructure coverage. Recently, with the help of a promising technology called network virtualization, multiple service providers (SPs) can share the infrastructures and wireless resources owned by the mobile network operators (MNOs). Then, they provide specific services to their mobile users using the resources obtained from MNOs. However, wireless resource sharing among SPs is challenging as each SP wants to maximize their utility/profit selfishly while satisfying the QoS requirement of their mobile users. Therefore, in this paper, we propose joint user association and wireless resource sharing problem in the cell-free UAVs-assisted wireless networks with the objective of maximizing the total network utility of the SPs while ensuring QoS constraints of their mobile users and the resource constraints of the UAVs deployed by MNOs. To solve the proposed mixed-integer non-convex problem, we decompose the proposed problem into two subproblems: users association, and resource sharing problems. Then, a two-sided matching algorithm is deployed in order to solve users association problem. We further deploy the whale optimization and Lagrangian relaxation algorithms to solve the resource sharing problem. Finally, extensive numerical results are provided in order to show the effectiveness of our proposed algorithm.
Network softwarization has revolutionized the architecture of cellular wireless networks. State-of-the-art container based virtual radio access networks (vRAN) provide enormous flexibility and reduced life cycle management costs, but they also come with prohibitive energy consumption. We argue that for future AI-native wireless networks to be flexible and energy efficient, there is a need for a new abstraction in network softwarization that caters for neural network type of workloads and allows a large degree of service composability. In this paper we present the NeuroRAN architecture, which leverages stateful function as a user facing execution model, and is complemented with virtualized resources and decentralized resource management. We show that neural network based implementations of common transceiver functional blocks fit the proposed architecture, and we discuss key research challenges related to compilation and code generation, resource management, reliability and security.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا