Do you want to publish a course? Click here

Ultra-sensitive nanometric flat pigment for binocular stereoscopic image

118   0   0.0 ( 0 )
 Added by Hao Li
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) transition metal dichalcogenides (TMDs) with tantalizing layer-dependent electronic and optical properties have emerged as a new paradigm for integrated flat opto-electronic devices. However, daunting challenges remain in deterministic fabrication of TMD layers with demanded shapes and thicknesses as well as light field manipulation in such atomic-thick layers with vanishingly small thicknesses compared to the wavelength. Here, we demonstrate ultra-sensitive light field manipulation in full visible ranges based on laser exfoliating MoS2 layers with nanometric precisions. The nontrivial interfacial phase shifts stemming from the unique dispersion of MoS2 layers integrated on the metallic substrate empower an ultra-sensitive resonance manipulation up to 12.8 nm per MoS2 layer across the entire visible bands, which is more than five times larger than their counterparts. The interlayer van der Waals interactions endow a laser exfoliation method for on-demand patterning MoS2 with atomic thickness precisions and subwavelength feature sizes in a facile and lithography-free fashion. With this, nanometric flat color prints and further binocular stereoscopic views by multi-perspective diffractive images can be realized. Our results with demonstrated practicality unlock full potentials and pave the way for widespread applications of emerging 2D flat optics.



rate research

Read More

Plasmonic lasers provide a paradigm-changing approach for the generation of coherent light at the nanoscale. In addition to the usual properties of coherent radiation, the emission of plasmonic lasers can feature high sensitivity to the surrounding environment, which makes this technology attractive for developing high-performance and highly-integrated sensing devices. Here, we investigate a plasmonic laser architecture based on a high-Q plasmonic crystal consisting of a periodic arrangement of nanoholes on a thin gold film cladded with an organic-dye-doped SiO$_2$ gain layer as the gain material. We report an extensive full-wave numerical analysis of the devices lasing performance and its application as a biochemical sensor, showing that the proposed design features excellent figures of merit for surface sensing that in principle can be over an order of magnitude larger than those of previously reported high-performance plasmonic biosensor architectures.
We report a very high precision interferometric sensor with resolution up to ~{lambda}/1024, exploiting hollow photonic bandgap waveguide-based geometry for the first time. Here sensing has been measured by a complete switching in the direction of the outgoing beam, owing to transverse momentum oscillation phenomena. Using a 1.32 {mu}m source and core-width of 7.25 {mu}m, a complete switching cycle is obtained even due to a small change of ~1 nm in the core-width. Using hollow-core photonic bandgap waveguide, Talbot effect, revivals of the initial phase, oscillation in the transverse momentum along with multi-mode interference served as the backbone of the design. The ultra-sensitive multi-mode interferometric sensor based on photonic crystals will certainly open up a paradigm shift in interferometer-based sensing technologies toward device-level applications in photonic sensing/switching and related precision measurement systems.
While polarisation sensing is vital in many areas of research, with applications spanning from microscopy to aerospace, traditional approaches are limited by method-related error amplification or accumulation, placing fundamental limitations on precision and accuracy in single-shot polarimetry. Here, we put forward a new measurement paradigm to circumvent this, introducing the notion of a universal full Poincare generator to map all polarisation analyser states into a single vectorially structured light field, allowing all vector components to be analysed in a single-shot with theoretically user-defined precision. To demonstrate the advantage of our approach, we use a common GRIN optic as our mapping device and show mean errors of <1% for each vector component, enhancing the sensitivity by around three times, allowing us to sense weak polarisation aberrations not measurable by traditional single-shot techniques. Our work paves the way for next-generation polarimetry, impacting a wide variety of applications relying on weak vector measurement.
Strong-field photoemission from nanostructures and the associated temporally modulated currents play a key role in the development of ultrafast vacuum optoelectronics. Optical light fields could push their operation bandwidth into the petahertz domain. A critical aspect for their functionality in the context of applications is the role of charge interactions, including space charge effects. Here, we investigated the photoemission and photocurrents from nanometric tungsten needle tips exposed to carrier-envelope phase-controlled few-cycle laser fields. We report a characteristic step-wise increase in the intensity-rescaled cutoff energies of emitted electrons beyond a certain intensity value. By comparison with simulations, we identify this feature as the onset of charge-interaction dominated photoemission dynamics. Our results are anticipated to be relevant also for the strong-field photoemission from other nanostructures, including photoemission from plasmonic nano-bowtie antennas used in carrier-envelope phase-detection and for PHz-scale devices.
Scattering induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, the resonance dips of the split modes which otherwise would not be detected in a passive resonator. In the lasing regime, mode splitting manifests itself as two lasing modes with extremely narrow linewidths. Mixing of these laser modes in a detector leads to a heterodyne beat signal whose frequency corresponds to the amount of splitting. Lasing regime not only allows ultrahigh sensitivity for mode-splitting measurements but also provides an easily accessible scheme by eliminating the need for wavelength scanning around resonant modes. Mode splitting in active microcavities has immediate impact in enhancing the sensitivity of sub-wavelength scatterer detection and in studying light-matter interactions in strong coupling regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا