Do you want to publish a course? Click here

Assuring the Integrity of Videos from Wireless-based IoT Devices using Blockchain

116   0   0.0 ( 0 )
 Added by Suat Mercan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Blockchain technology has drawn attention fromvarious communities. The underlying consensus mechanism inBlockchain enables a myriad of applications for the integrityassurance of stored data. In this paper, we utilize Blockchaintechnology to verify the authenticity of a video captured by astreaming IoT device for forensic investigation purposes. Theproposed approach computes the hash of video frames beforethey leave the IoT device and are transferred to a remote basestation. To guarantee the transmission, we ensure that this hashis sent through a TCP-based connection. The hash is then storedon multiple nodes on a permissioned blockchain platform. Incase the video is modified, the discrepancy will be detected byinvestigating the previously stored hash on the blockchain andcomparing it with the hash of the existing frame in question.In this work, we present the prototype as proof-of-concept withexperiment results. The system has been tested on a RaspberryPi with different quality of videos to evaluate performance. Theresults show that the concept can be implemented with moderatevideo resolutions.



rate research

Read More

In this paper, we have studied how the text of an ancient literature on how their integrity has been preserved for several centuries. Specifically, The Vedas is an ancient literature, which has its text remained preserved without any corruption for thousands of years. As we studied the system that protects the integrity of the text, pronunciation and semantics of the The Vedas, we discovered a number of similarities it has with the current concept of blockchain technology. It is surprising that the notion of de-centralized trust and mathematical encodings have existed since thousands of years in order to protect this work of literature. We have presented our findings and analysis of the similarities. There are also certain technical mechanisms that The Vedic integrity system uses, which can be used to enhance the current digital blockchain platforms in terms of its security and robustness.
The data collected from Internet of Things (IoT) devices on various emissions or pollution, can have a significant economic value for the stakeholders. This makes it prone to abuse or tampering and brings forward the need to integrate IoT with a Distributed Ledger Technology (DLT) to collect, store, and protect the IoT data. However, DLT brings an additional overhead to the frugal IoT connectivity and symmetrizes the IoT traffic, thus changing the usual assumption that IoT is uplink-oriented. We have implemented a platform that integrates DLTs with a monitoring system based on narrowband IoT (NB-IoT). We evaluate the performance and discuss the tradeoffs in two use cases: data authorization and real-time monitoring.
IoT devices have been adopted widely in the last decade which enabled collection of various data from different environments. The collected data is crucial in certain applications where IoT devices generate data for critical infrastructure or systems whose failure may result in catastrophic results. Specifically, for such critical applications, data storage poses challenges since the data may be compromised during the storage and the integrity might be violated without being noticed. In such cases, integrity and data provenance are required in order to be able to detect the source of any incident and prove it in legal cases if there is a dispute with the involved parties. To address these issues, blockchain provides excellent opportunities since it can protect the integrity of the data thanks to its distributed structure. However, it comes with certain costs as storing huge amount of data in a public blockchain will come with significant transaction fees. In this paper, we propose a highly cost effective and reliable digital forensics framework by exploiting multiple inexpensive blockchain networks as a temporary storage before the data is committed to Ethereum. To reduce Ethereum costs,we utilize Merkle trees which hierarchically stores hashes of the collected event data from IoT devices. We evaluated the approach on popular blockchains such as EOS, Stellar, and Ethereum by presenting a cost and security analysis. The results indicate that we can achieve significant cost savings without compromising the integrity of the data.
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailored to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
As digitization increases, the need to automate various entities becomes crucial for development. The data generated by the IoT devices need to be processed accurately and in a secure manner. The basis for the success of such a scenario requires blockchain as a means of unalterable data storage to improve the overall security and trust in the system. By providing trust in an automated system, with real-time data updates to all stakeholders, an improved form of implementation takes the stage and can help reduce the stress of adaptability to complete automated systems. This research focuses on a use case with respect to the real time Internet of Things (IoT) network which is deployed at the beach of Chicago Park District. This real time data which is collected from various sensors is then used to design a predictive model using Deep Neural Networks for estimating the battery life of IoT sensors that is deployed at the beach. This proposed model could help the government to plan for placing orders of replaceable batteries before time so that there can be an uninterrupted service. Since this data is sensitive and requires to be secured, the predicted battery life value is stored in blockchain which would be a tamper-proof record of the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا