Do you want to publish a course? Click here

A.I. based Embedded Speech to Text Using Deepspeech

109   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deepspeech was very useful for development IoT devices that need voice recognition. One of the voice recognition systems is deepspeech from Mozilla. Deepspeech is an open-source voice recognition that was using a neural network to convert speech spectrogram into a text transcript. This paper shows the implementation process of speech recognition on a low-end computational device. Development of English-language speech recognition that has many datasets become a good point for starting. The model that used results from pre-trained model that provide by each version of deepspeech, without change of the model that already released, furthermore the benefit of using raspberry pi as a media end-to-end speech recognition device become a good thing, user can change and modify of the speech recognition, and also deepspeech can be standalone device without need continuously internet connection to process speech recognition, and even this paper show the power of Tensorflow Lite can make a significant difference on inference by deepspeech rather than using Tensorflow non-Lite.This paper shows the experiment using Deepspeech version 0.1.0, 0.1.1, and 0.6.0, and there is some improvement on Deepspeech version 0.6.0, faster while processing speech-to-text on old hardware raspberry pi 3 b+.



rate research

Read More

Multi-speaker speech synthesis is a technique for modeling multiple speakers voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is limited. We propose a framework for multi-speaker speech synthesis using deep Gaussian processes (DGPs); a DGP is a deep architecture of Bayesian kernel regressions and thus robust to overfitting. In this framework, speaker information is fed to duration/acoustic models using speaker codes. We also examine the use of deep Gaussian process latent variable models (DGPLVMs). In this approach, the representation of each speaker is learned simultaneously with other model parameters, and therefore the similarity or dissimilarity of speakers is considered efficiently. We experimentally evaluated two situations to investigate the effectiveness of the proposed methods. In one situation, the amount of data from each speaker is balanced (speaker-balanced), and in the other, the data from certain speakers are limited (speaker-imbalanced). Subjective and objective evaluation results showed that both the DGP and DGPLVM synthesize multi-speaker speech more effective than a DNN in the speaker-balanced situation. We also found that the DGPLVM outperforms the DGP significantly in the speaker-imbalanced situation.
Explicit duration modeling is a key to achieving robust and efficient alignment in text-to-speech synthesis (TTS). We propose a new TTS framework using explicit duration modeling that incorporates duration as a discrete latent variable to TTS and enables joint optimization of whole modules from scratch. We formulate our method based on conditional VQ-VAE to handle discrete duration in a variational autoencoder and provide a theoretical explanation to justify our method. In our framework, a connectionist temporal classification (CTC) -based force aligner acts as the approximate posterior, and text-to-duration works as the prior in the variational autoencoder. We evaluated our proposed method with a listening test and compared it with other TTS methods based on soft-attention or explicit duration modeling. The results showed that our systems rated between soft-attention-based methods (Transformer-TTS, Tacotron2) and explicit duration modeling-based methods (Fastspeech).
Text-based speech editors expedite the process of editing speech recordings by permitting editing via intuitive cut, copy, and paste operations on a speech transcript. A major drawback of current systems, however, is that edited recordings often sound unnatural because of prosody mismatches around edited regions. In our work, we propose a new context-aware method for more natural sounding text-based editing of speech. To do so, we 1) use a series of neural networks to generate salient prosody features that are dependent on the prosody of speech surrounding the edit and amenable to fine-grained user control 2) use the generated features to control a standard pitch-shift and time-stretch method and 3) apply a denoising neural network to remove artifacts induced by the signal manipulation to yield a high-fidelity result. We evaluate our approach using a subjective listening test, provide a detailed comparative analysis, and conclude several interesting insights.
253 - Nanxin Chen , Yu Zhang , Heiga Zen 2021
This paper introduces WaveGrad 2, a non-autoregressive generative model for text-to-speech synthesis. WaveGrad 2 is trained to estimate the gradient of the log conditional density of the waveform given a phoneme sequence. The model takes an input phoneme sequence, and through an iterative refinement process, generates an audio waveform. This contrasts to the original WaveGrad vocoder which conditions on mel-spectrogram features, generated by a separate model. The iterative refinement process starts from Gaussian noise, and through a series of refinement steps (e.g., 50 steps), progressively recovers the audio sequence. WaveGrad 2 offers a natural way to trade-off between inference speed and sample quality, through adjusting the number of refinement steps. Experiments show that the model can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system. We also report various ablation studies over different model configurations. Audio samples are available at https://wavegrad.github.io/v2.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many institutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا