Do you want to publish a course? Click here

DC-BERT: Decoupling Question and Document for Efficient Contextual Encoding

70   0   0.0 ( 0 )
 Added by Yuyu Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent studies on open-domain question answering have achieved prominent performance improvement using pre-trained language models such as BERT. State-of-the-art approaches typically follow the retrieve and read pipeline and employ BERT-based reranker to filter retrieved documents before feeding them into the reader module. The BERT retriever takes as input the concatenation of question and each retrieved document. Despite the success of these approaches in terms of QA accuracy, due to the concatenation, they can barely handle high-throughput of incoming questions each with a large collection of retrieved documents. To address the efficiency problem, we propose DC-BERT, a decoupled contextual encoding framework that has dual BERT models: an online BERT which encodes the question only once, and an offline BERT which pre-encodes all the documents and caches their encodings. On SQuAD Open and Natural Questions Open datasets, DC-BERT achieves 10x speedup on document retrieval, while retaining most (about 98%) of the QA performance compared to state-of-the-art approaches for open-domain question answering.



rate research

Read More

We propose a novel data augmentation method for labeled sentences called conditional BERT contextual augmentation. Data augmentation methods are often applied to prevent overfitting and improve generalization of deep neural network models. Recently proposed contextual augmentation augments labeled sentences by randomly replacing words with more varied substitutions predicted by language model. BERT demonstrates that a deep bidirectional language model is more powerful than either an unidirectional language model or the shallow concatenation of a forward and backward model. We retrofit BERT to conditional BERT by introducing a new conditional masked language modelfootnote{The term conditional masked language model appeared once in original BERT paper, which indicates context-conditional, is equivalent to term masked language model. In our paper, conditional masked language model indicates we apply extra label-conditional constraint to the masked language model.} task. The well trained conditional BERT can be applied to enhance contextual augmentation. Experiments on six various different text classification tasks show that our method can be easily applied to both convolutional or recurrent neural networks classifier to obtain obvious improvement.
Multi-document question generation focuses on generating a question that covers the common aspect of multiple documents. Such a model is useful in generating clarifying options. However, a naive model trained only using the targeted (positive) document set may generate too generic questions that cover a larger scope than delineated by the document set. To address this challenge, we introduce the contrastive learning strategy where given positive and negative sets of documents, we generate a question that is closely related to the positive set but is far away from the negative set. This setting allows generated questions to be more specific and related to the target document set. To generate such specific questions, we propose Multi-Source Coordinated Question Generator (MSCQG), a novel framework that includes a supervised learning (SL) stage and a reinforcement learning (RL) stage. In the SL stage, a single-document question generator is trained. In the RL stage, a coordinator model is trained to find optimal attention weights to align multiple single-document generators, by optimizing a reward designed to promote specificity of generated questions. We also develop an effective auxiliary objective, named Set-induced Contrastive Regularization (SCR) that improves the coordinators contrastive learning during the RL stage. We show that our model significantly outperforms several strong baselines, as measured by automatic metrics and human evaluation. The source repository is publicly available at url{www.github.com/woonsangcho/contrast_qgen}.
In this paper, we focus on the classification of books using short descriptive texts (cover blurbs) and additional metadata. Building upon BERT, a deep neural language model, we demonstrate how to combine text representations with metadata and knowledge graph embeddings, which encode author information. Compared to the standard BERT approach we achieve considerably better results for the classification task. For a more coarse-grained classification using eight labels we achieve an F1- score of 87.20, while a detailed classification using 343 labels yields an F1-score of 64.70. We make the source code and trained models of our experiments publicly available
We present a novel way of injecting factual knowledge about entities into the pretrained BERT model (Devlin et al., 2019): We align Wikipedia2Vec entity vectors (Yamada et al., 2016) with BERTs native wordpiece vector space and use the aligned entity vectors as if they were wordpiece vectors. The resulting entity-enhanced version of BERT (called E-BERT) is similar in spirit to ERNIE (Zhang et al., 2019) and KnowBert (Peters et al., 2019), but it requires no expensive further pretraining of the BERT encoder. We evaluate E-BERT on unsupervised question answering (QA), supervised relation classification (RC) and entity linking (EL). On all three tasks, E-BERT outperforms BERT and other baselines. We also show quantitatively that the original BERT model is overly reliant on the surface form of entity names (e.g., guessing that someone with an Italian-sounding name speaks Italian), and that E-BERT mitigates this problem.
The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا