Do you want to publish a course? Click here

Conditional BERT Contextual Augmentation

121   0   0.0 ( 0 )
 Added by Wu Xing
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose a novel data augmentation method for labeled sentences called conditional BERT contextual augmentation. Data augmentation methods are often applied to prevent overfitting and improve generalization of deep neural network models. Recently proposed contextual augmentation augments labeled sentences by randomly replacing words with more varied substitutions predicted by language model. BERT demonstrates that a deep bidirectional language model is more powerful than either an unidirectional language model or the shallow concatenation of a forward and backward model. We retrofit BERT to conditional BERT by introducing a new conditional masked language modelfootnote{The term conditional masked language model appeared once in original BERT paper, which indicates context-conditional, is equivalent to term masked language model. In our paper, conditional masked language model indicates we apply extra label-conditional constraint to the masked language model.} task. The well trained conditional BERT can be applied to enhance contextual augmentation. Experiments on six various different text classification tasks show that our method can be easily applied to both convolutional or recurrent neural networks classifier to obtain obvious improvement.



rate research

Read More

Most adversarial attack methods that are designed to deceive a text classifier change the text classifiers prediction by modifying a few words or characters. Few try to attack classifiers by rewriting a whole sentence, due to the difficulties inherent in sentence-level rephrasing as well as the problem of setting the criteria for legitimate rewriting. In this paper, we explore the problem of creating adversarial examples with sentence-level rewriting. We design a new sampling method, named ParaphraseSampler, to efficiently rewrite the original sentence in multiple ways. Then we propose a new criteria for modification, called a sentence-level threaten model. This criteria allows for both word- and sentence-level changes, and can be adjusted independently in two dimensions: semantic similarity and grammatical quality. Experimental results show that many of these rewritten sentences are misclassified by the classifier. On all 6 datasets, our ParaphraseSampler achieves a better attack success rate than our baseline.
In this paper, we address the problem of learning low dimension representation of entities on relational databases consisting of multiple tables. Embeddings help to capture semantics encoded in the database and can be used in a variety of settings like auto-completion of tables, fully-neural query processing of relational joins queries, seamlessly handling missing values, and more. Current work is restricted to working with just single table, or using pretrained embeddings over an external corpus making them unsuitable for use in real-world databases. In this work, we look into ways of using these attention-based model to learn embeddings for entities in the relational database. We are inspired by BERT style pretraining methods and are interested in observing how they can be extended for representation learning on structured databases. We evaluate our approach of the autocompletion of relational databases and achieve improvement over standard baselines.
Modern pre-trained language models are mostly built upon backbones stacking self-attention and feed-forward layers in an interleaved order. In this paper, beyond this stereotyped layer pattern, we aim to improve pre-trained models by exploiting layer variety from two aspects: the layer type set and the layer order. Specifically, besides the original self-attention and feed-forward layers, we introduce convolution into the layer type set, which is experimentally found beneficial to pre-trained models. Furthermore, beyond the original interleaved order, we explore more layer orders to discover more powerful architectures. However, the introduced layer variety leads to a large architecture space of more than billions of candidates, while training a single candidate model from scratch already requires huge computation cost, making it not affordable to search such a space by directly training large amounts of candidate models. To solve this problem, we first pre-train a supernet from which the weights of all candidate models can be inherited, and then adopt an evolutionary algorithm guided by pre-training accuracy to find the optimal architecture. Extensive experiments show that LV-BERT model obtained by our method outperforms BERT and its variants on various downstream tasks. For example, LV-BERT-small achieves 79.8 on the GLUE testing set, 1.8 higher than the strong baseline ELECTRA-small.
135 - Sosuke Kobayashi 2018
We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastically replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.
Recently, transformer-based language models such as BERT have shown tremendous performance improvement for a range of natural language processing tasks. However, these language models usually are computation expensive and memory intensive during inference. As a result, it is difficult to deploy them on resource-restricted devices. To improve the inference performance, as well as reduce the model size while maintaining the model accuracy, we propose a novel quantization method named KDLSQ-BERT that combines knowledge distillation (KD) with learned step size quantization (LSQ) for language model quantization. The main idea of our method is that the KD technique is leveraged to transfer the knowledge from a teacher model to a student model when exploiting LSQ to quantize that student model during the quantization training process. Extensive experiment results on GLUE benchmark and SQuAD demonstrate that our proposed KDLSQ-BERT not only performs effectively when doing different bit (e.g. 2-bit $sim$ 8-bit) quantization, but also outperforms the existing BERT quantization methods, and even achieves comparable performance as the full-precision base-line model while obtaining 14.9x compression ratio. Our code will be public available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا