No Arabic abstract
Here we report a scanning tunneling microscopy (STM) and spectroscopy (STS) study in the superconducting state of 2H-NbS2. We directly visualize the existence of incommensurate charge density wave (CDW) that is pinned by atomic impurities. In strong tunneling conditions, the incommensurate CDW is de-pinned from impurities by the electric field from STM tip. We perform STM-based inelastic tunneling spectroscopy (IETS) to detect phonon excitations in 2H-NbS2 and measure the influence of atomic impurities on local phonon excitations. In comparison with the calculated vibrational density of states in 2H-NbS2, we find two branches of phonon excitations which correspond to the vibrations of Nb ions and S ions, and the strength of the local phonon excitations is insensitive to the atomic impurities. Our results demonstrate the coexistence of incommensurate CDW and superconductivity in 2H-NbS2, and open the way of detecting atomic-scale phonon excitations in transition metal dichalcogenides with STM-based IETS.
Bulk 1T-TaSe2 exhibits unusually high charge density wave (CDW) transition temperatures of 600 K and 473 K below which the material exists in the incommensurate (I-CDW) and the commensurate (C-CDW) charge-density-wave phases, respectively. The C-CDW reconstruction of the lattice coincides with new Raman peaks resulting from zone-folding of phonon modes from middle regions of the original Brillouin zone back to the Gamma point. The C-CDW transition temperatures as a function of film thickness are determined from the evolution of these new Raman peaks and they are found to decrease from 473K to 413K as the film thicknesses decrease from 150 nm to 35 nm. A comparison of the Raman data with ab initio calculations of both the normal and C-CDW phases gives a consistent picture of the zone-folding of the phonon modes following lattice reconstruction. In the I-CDW phase, the loss of translational symmetry coincides with a strong suppression and broadening of the Raman peaks. The observed change in the C-CDW transition temperature is consistent with total energy calculations of bulk and monolayer 1T-TaSe2.
Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a correlated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 {mu}m) to the telecom (1.55 {mu}m) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.
Because a material with an incommensurate charge density wave (ICDW) is only quasi-periodic, Blochs theorem does not apply and there is no sharply defined Fermi surface. We will show that, as a consequence, there are no quantum oscillations which are truly periodic functions of $1/B$ (where $ B$ is the magnitude of an applied magnetic field). For a weak ICDW, there exist broad ranges of $1/B$ in which approximately periodic variations occur, but with frequencies that vary inexorably in an unending cascade with increasing $1/B$. For a strong ICDW, e.g. in a quasi-crystal, no quantum oscillations survive at all. Rational and irrational numbers really are different.
In the present work, we study the magnetic properties of the NbS2 monolayer by first-principles calculations. The transition metal dichalcogenides (TMDC) are a family of laminar materials presenting exciting properties such as charge density waves (CDW), superconductivity and metal-insulating transitions among others. 2H-NbS2 is a particular case within the family, because it is the only one that is superconductor without exhibiting a CDW order. Although no long range magnetic order was experimentally observed in the TMDC, we show here that the single monolayer of NbS2 is on the verge of a spin density wave (SDW) phase. Our calculations indicate that a wave-like magnetic order is stabilized in the NbS2 monolayer in the presence of magnetic defects or within zig-zag nanoribbons, due to the presence of unpaired electrons. We calculate the real part of the bare electronic susceptibilty and the corresponding nesting function of the clean NbS2 monolayer, showing that there are strong electronic instabilities at the same wavevector asociated with the calculated SDWs, also corresponding with one of the main nesting vectors of the Fermi surface. We conclude that the physical mechanism behind the spin-wave instabilities are the nesting properties, accentuated by the quasi 2D character of this system, and the rather strong Coulomb interactions of the 4d band of the Nb atom. We also estimate the amplitude of the spin-fluctuations and find that they are rather large, as expected for a system on the verge of a quantum critical transition.