No Arabic abstract
Low rank matrix recovery problems appear widely in statistics, combinatorics, and imaging. One celebrated method for solving these problems is to formulate and solve a semidefinite program (SDP). It is often known that the exact solution to the SDP with perfect data recovers the solution to the original low rank matrix recovery problem. It is more challenging to show that an approximate solution to the SDP formulated with noisy problem data acceptably solves the original problem; arguments are usually ad hoc for each problem setting, and can be complex. In this note, we identify a set of conditions that we call simplicity that limit the error due to noisy problem data or incomplete convergence. In this sense, simple SDPs are robust: simple SDPs can be (approximately) solved efficiently at scale; and the resulting approximate solutions, even with noisy data, can be trusted. Moreover, we show that simplicity holds generically, and also for many structured low rank matrix recovery problems, including the stochastic block model, $mathbb{Z}_2$ synchronization, and matrix completion. Formally, we call an SDP simple if it has a surjective constraint map, admits a unique primal and dual solution pair, and satisfies strong duality and strict complementarity. However, simplicity is not a panacea: we show the Burer-Monteiro formulation of the SDP may have spurious second-order critical points, even for a simple SDP with a rank 1 solution.
We propose an algorithm for solving nonlinear convex programs defined in terms of a symmetric positive semidefinite matrix variable $X$. This algorithm rests on the factorization $X=Y Y^T$, where the number of columns of Y fixes the rank of $X$. It is thus very effective for solving programs that have a low rank solution. The factorization $X=Y Y^T$ evokes a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second order optimization method. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. The efficiency of the proposed algorithm is illustrated on two applications: the maximal cut of a graph and the sparse principal component analysis problem.
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimization problems and from the analysis of bundle methods. Under strong duality and strict complementarity of SDP, our algorithm produces primal and the dual sequences converging in feasibility at a rate of $tilde{O}(1/epsilon)$ and in optimality at a rate of $tilde{O}(1/epsilon^2)$. Moreover, our algorithm outputs a low rank representation of its approximate solution with distance to the optimal solution at most $O(sqrt{epsilon})$ within $tilde{O}(1/epsilon^2)$ iterations.
In this paper, we investigate the generalized low rank approximation to the symmetric positive semidefinite matrix in the Frobenius norm: $$underset{ rank(X)leq k}{min} sum^m_{i=1}left Vert A_i - B_i XB_i^T right Vert^2_F,$$ where $X$ is an unknown symmetric positive semidefinite matrix and $k$ is a positive integer. We firstly use the property of a symmetric positive semidefinite matrix $X=YY^T$, $Y$ with order $ntimes k$, to convert the generalized low rank approximation into unconstraint generalized optimization problem. Then we apply the nonlinear conjugate gradient method to solve the generalized optimization problem. We give a numerical example to illustrate the numerical algorithm is feasible.
A bilevel program is an optimization problem whose constraints involve another optimization problem. This paper studies bilevel polynomial programs (BPPs), i.e., all the functions are polynomials. We reformulate BPPs equivalently as semi-infinite polynomial programs (SIPPs), using Fritz John conditions and Jacobian representations. Combining the exchange technique and Lasserre type semidefinite relaxations, we propose numerical methods for solving both simple and general BPPs. For simple BPPs, we prove the convergence to global optimal solutions. Numerical experiments are presented to show the efficiency of proposed algorithms.
The robustness of a neural network to adversarial examples can be provably certified by solving a convex relaxation. If the relaxation is loose, however, then the resulting certificate can be too conservative to be practically useful. Recently, a less conservative robustness certificate was proposed, based on a semidefinite programming (SDP) relaxation of the ReLU activation function. In this paper, we describe a geometric technique that determines whether this SDP certificate is exact, meaning whether it provides both a lower-bound on the size of the smallest adversarial perturbation, as well as a globally optimal perturbation that attains the lower-bound. Concretely, we show, for a least-squares restriction of the usual adversarial attack problem, that the SDP relaxation amounts to the nonconvex projection of a point onto a hyperbola. The resulting SDP certificate is exact if and only if the projection of the point lies on the major axis of the hyperbola. Using this geometric technique, we prove that the certificate is exact over a single hidden layer under mild assumptions, and explain why it is usually conservative for several hidden layers. We experimentally confirm our theoretical insights using a general-purpose interior-point method and a custom rank-2 Burer-Monteiro algorithm.