Do you want to publish a course? Click here

New white dwarf envelope models and diffusion. Application to DQ white dwarfs

78   0   0.0 ( 0 )
 Added by Detlev Koester
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. The classical DQ below 10000 K are well understood as the result of dredge-up of carbon by the expanding helium convection zone. The high-mass group poses several problems regarding their origin and also an unexpected correlation of effective temperature with mass. We propose to study the envelopes of these objects to determine the total hydrogen and helium masses as possible clues to their evolution. We developed new codes for envelope integration and diffusive equilibrium that are adapted to the unusual chemical composition, which is not necessarily dominated by hydrogen and helium. Using the new results for the atmospheric parameters, in particular, the masses obtained using Gaia parallaxes, we confirm that the narrow sequence of carbon abundances with Teff in the cool classical DQ is indeed caused by an almost constant helium to total mass fraction, as found in earlier studies. This mass fraction is smaller than predicted by stellar evolution calculations. For the warm DQ above 10000 K, which are thought to originate from double white dwarf mergers, we obtain extremely low hydrogen and helium masses. The correlation of mass with Teff remains unexplained, but another possible correlation of helium layer masses with Teff as well as the gravitational redshifts casts doubt on the reality of both and suggests possible shortcomings of current models.



rate research

Read More

We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of $g$-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological window, after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.
We present a detailed analysis of all the known Hot DQ white dwarfs in the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to have carbon dominated atmospheres. Our spectroscopic and photometric analysis reveals that these objects all have effective temperatures between ~18,000 and 24,000 K. The surface composition is found to be completely dominated by carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or determination of trace amount in a few cases). We find that the surface gravity of all objects but one seems to be normal and around log g = 8.0 while one is likely near log g = 9.0. The presence of a weak magnetic field is directly detected by spectropolarimetry in one object and is suspected in two others. We propose that these strange stars could be cooled do
White dwarfs (WDs) with carbon absorption features in their optical spectra are known as DQ WDs. The subclass of peculiar DQ WDs are cool objects (T_eff<6000 K) which show molecular absorption bands that have centroid wavelengths ~100-300 Angstroms shortward of the bandheads of the C_2 Swan bands. These peculiar DQ bands have been attributed to a hydrocarbon such as C_2H. We point out that C_2H does not show strong absorption bands with wavelengths matching those of the peculiar DQ bands and neither does any other simple molecule or ion likely to be present in a cool WD atmosphere. The most straightforward explanation for the peculiar DQ bands is that they are pressure-shifted Swan bands of C_2. While current models of WD atmospheres suggest that, in general, peculiar DQ WDs do not have higher photospheric pressures than normal DQ WDs do, that finding requires confirmation by improved models of WD atmospheres and of the behavior of C_2 at high pressures and temperatures. If it is eventually shown that the peculiar DQ bands cannot be explained as pressure-shifted Swan bands, the only explanation remaining would seem to be that they arise from highly rotationally excited C_2 (J_peak>45). In either case, the absorption band profiles can in principle be used to constrain the pressure and the rotational temperature of C_2 in the line-forming regions of normal and peculiar DQ WD atmospheres, which will be useful for comparison with models. Finally, we note that progress in understanding magnetic DQ WDs may require models which simultaneously consider magnetic fields, high pressures and rotational excitation of C_2.
We report the discovery of a new class of hydrogen-deficient stars: white dwarfs with an atmosphere primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch (AGB) evolution, although these objects might be the cooler counter-part of the unique and extensively studied PG 1159 star H1504+65. These stars, together with H1504+65, might thus form a new evolutionary post-AGB sequence.
White dwarf stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components ---including the star formation history of the Milky Way. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Also, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model. The last decade has witnessed a great progress in the study of white dwarfs. In particular, a wealth of information of these stars from different surveys has allowed us to make meaningful comparison of evolutionary models with observations. While some information like surface chemical composition, temperature and gravity of isolated white dwarfs can be inferred from spectroscopy, and the total mass and radius can be derived as well when they are in binaries, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods predicted by appropriate theoretical models. The asteroseismological techniques allow us to infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile. In this review, we first revise the evolutionary channels currently accepted that lead to the formation of white-dwarf stars, and then, we give a detailed account of the different sub-types of pulsating white dwarfs known so far, emphasizing the recent observational and theoretical advancements in the study of these fascinating variable stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا