No Arabic abstract
We report the discovery of a new class of hydrogen-deficient stars: white dwarfs with an atmosphere primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch (AGB) evolution, although these objects might be the cooler counter-part of the unique and extensively studied PG 1159 star H1504+65. These stars, together with H1504+65, might thus form a new evolutionary post-AGB sequence.
Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. The classical DQ below 10000 K are well understood as the result of dredge-up of carbon by the expanding helium convection zone. The high-mass group poses several problems regarding their origin and also an unexpected correlation of effective temperature with mass. We propose to study the envelopes of these objects to determine the total hydrogen and helium masses as possible clues to their evolution. We developed new codes for envelope integration and diffusive equilibrium that are adapted to the unusual chemical composition, which is not necessarily dominated by hydrogen and helium. Using the new results for the atmospheric parameters, in particular, the masses obtained using Gaia parallaxes, we confirm that the narrow sequence of carbon abundances with Teff in the cool classical DQ is indeed caused by an almost constant helium to total mass fraction, as found in earlier studies. This mass fraction is smaller than predicted by stellar evolution calculations. For the warm DQ above 10000 K, which are thought to originate from double white dwarf mergers, we obtain extremely low hydrogen and helium masses. The correlation of mass with Teff remains unexplained, but another possible correlation of helium layer masses with Teff as well as the gravitational redshifts casts doubt on the reality of both and suggests possible shortcomings of current models.
Many main-sequence F and early G stars are too luminous for their effective temperature, surface gravity, and chemical composition. These {it overluminous stars} have two curious properties. First, their kinematics as a function of age from stellar evolution modeling (isochrone fitting) is very different from that of normal stars. Second, while X-ray luminosity of normal stars declines with age, the X-ray luminosity of overluminous F stars changes in the opposite direction, being on average higher for older stars. These properties imply that, in defiance of standard models of stellar evolution, F stars of a given mass and chemical composition can evolve very differently. Assuming that the models correctly describe normal stars, for overluminous F stars they predict too young age and the X-ray emission evolving in the direction opposite to the actually observed trend. This discrepancy between modeling results and observational data suggests that standard stellar evolution models and models of stellar activity are missing some important factors, which makes stellar age and predictions for stellar activity from these models problematic. The data and literature analysis presented in this paper point to a nonuniform rotation of the stellar interior as a plausible key factor able to reconcile the divergent trends in age-velocity relationships of normal and overluminous F stars and explain in a coherent and self-consistent way the overluminosity phenomenon.
We report the discovery of a hot DQ white dwarf, NGC 2168:LAWDS 28, that is a likely member of the 150-Myr old cluster NGC 2168 (Messier 35). The spectrum of the white dwarf is dominated by CII features. The effective temperature is difficult to estimate but likely > 20,000 K based on the temperatures of hot DQs with similar spectra. NGC2168:LAWDS 28 provides further evidence that hot DQs may be the ``missing high-mass helium-atmosphere white dwarfs. Based on published studies, we find that the DBA WD LP 475-242 is likely a member of the Hyades open cluster, as often assumed. These two white dwarfs are the entire sample of known He-atmosphere white dwarfs in open clusters with turnoff masses >2 solar masses. Based on the number of known cluster DA white dwarfs and a redetermination of the H-atmosphere:He-atmosphere ratio, commonly known as the DA:DB ratio, we re-examine the hypothesis that the H- to He-atmosphere ratio in open clusters is the same as the ratio in the field. Under this hypothesis, we calculate that five He-atmosphere WDs are expected to have been discovered, with a probability of finding fewer than three He-atmosphere white dwarfs of 0.08, or at the ~ 2-sigma level.
The present paper focuses on the evolution of hydrogen-deficient white dwarfs with the aim of exploring the consequences of different initial envelope structures on the carbon abundances expected in helium-rich, carbon-contaminated DQ white dwarfs. In particular, the evolutionary link between the DQs with low detected carbon abundances and the PG1159, extreme horizontal branch, and helium-rich R Coronae Borealis (RCrB) stars is explored. We present full evolutionary calculations that take a self-consistent treatment of element diffusion into account as well as expectations for the outer layer chemical stratification of progenitor stars upon entering the white dwarf regime. We find that PG1159 stars cannot be related to any DQ white dwarfs with low C abundances. Instead, we suggest that the latter could constitute the progeny of the giant, helium-rich RCrB stars.
We present a detailed analysis of all the known Hot DQ white dwarfs in the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to have carbon dominated atmospheres. Our spectroscopic and photometric analysis reveals that these objects all have effective temperatures between ~18,000 and 24,000 K. The surface composition is found to be completely dominated by carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or determination of trace amount in a few cases). We find that the surface gravity of all objects but one seems to be normal and around log g = 8.0 while one is likely near log g = 9.0. The presence of a weak magnetic field is directly detected by spectropolarimetry in one object and is suspected in two others. We propose that these strange stars could be cooled do