Do you want to publish a course? Click here

Joint Transmission and Computing Scheduling for Status Update with Mobile Edge Computing

159   0   0.0 ( 0 )
 Added by Jie Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Age of Information (AoI), defined as the time elapsed since the generation of the latest received update, is a promising performance metric to measure data freshness for real-time status monitoring. In many applications, status information needs to be extracted through computing, which can be processed at an edge server enabled by mobile edge computing (MEC). In this paper, we aim to minimize the average AoI within a given deadline by jointly scheduling the transmissions and computations of a series of update packets with deterministic transmission and computing times. The main analytical results are summarized as follows. Firstly, the minimum deadline to guarantee the successful transmission and computing of all packets is given. Secondly, a emph{no-wait computing} policy which intuitively attains the minimum AoI is introduced, and the feasibility condition of the policy is derived. Finally, a closed-form optimal scheduling policy is obtained on the condition that the deadline exceeds a certain threshold. The behavior of the optimal transmission and computing policy is illustrated by numerical results with different values of the deadline, which validates the analytical results.



rate research

Read More

185 - Q. Liu , L. Shi , L. Sun 2020
In this letter, we study an unmanned aerial vehicle (UAV)-mounted mobile edge computing network, where the UAV executes computational tasks offloaded from mobile terminal users (TUs) and the motion of each TU follows a Gauss-Markov random model. To ensure the quality-of-service (QoS) of each TU, the UAV with limited energy dynamically plans its trajectory according to the locations of mobile TUs. Towards this end, we formulate the problem as a Markov decision process, wherein the UAV trajectory and UAV-TU association are modeled as the parameters to be optimized. To maximize the system reward and meet the QoS constraint, we develop a QoS-based action selection policy in the proposed algorithm based on double deep Q-network. Simulations show that the proposed algorithm converges more quickly and achieves a higher sum throughput than conventional algorithms.
Mobile-edge computing (MEC) has emerged as a prominent technique to provide mobile services with high computation requirement, by migrating the computation-intensive tasks from the mobile devices to the nearby MEC servers. To reduce the execution latency and device energy consumption, in this paper, we jointly optimize task offloading scheduling and transmit power allocation for MEC systems with multiple independent tasks. A low-complexity sub-optimal algorithm is proposed to minimize the weighted sum of the execution delay and device energy consumption based on alternating minimization. Specifically, given the transmit power allocation, the optimal task offloading scheduling, i.e., to determine the order of offloading, is obtained with the help of flow shop scheduling theory. Besides, the optimal transmit power allocation with a given task offloading scheduling decision will be determined using convex optimization techniques. Simulation results show that task offloading scheduling is more critical when the available radio and computational resources in MEC systems are relatively balanced. In addition, it is shown that the proposed algorithm achieves near-optimal execution delay along with a substantial device energy saving.
242 - Yuwen Qian , Feifei Wang , Jun Li 2019
Mobile edge computing (MEC) provides computational services at the edge of networks by offloading tasks from user equipments (UEs). This letter employs an unmanned aerial vehicle (UAV) as the edge computing server to execute offloaded tasks from the ground UEs. We jointly optimize user association, UAV trajectory, and uploading power of each UE to maximize sum bits offloaded from all UEs to the UAV, subject to energy constraint of the UAV and quality of service (QoS) of each UE. To address the non-convex optimization problem, we first decompose it into three subproblems that are solved with integer programming and successive convex optimization methods respectively. Then, we tackle the overall problem by the multi-variable iterative optimization algorithm. Simulations show that the proposed algorithm can achieve a better performance than other baseline schemes.
351 - Zhifei Lin , Feng Wang , 2021
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local computing. Towards maximizing the systems weighted computation rate (i.e., the number of weighted users computing bits within a finite time horizon) subject to the users energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized {em over time}. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we consider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا