Do you want to publish a course? Click here

Secure-by-synthesis network with active deception and temporal logic specifications

79   0   0.0 ( 0 )
 Added by Abhishek Kulkarni
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper is concerned with the synthesis of strategies in network systems with active cyber deception. Active deception in a network employs decoy systems and other defenses to conduct defensive planning against the intrusion of malicious attackers who have been confirmed by sensing systems. In this setting, the defenders objective is to ensure the satisfaction of security properties specified in temporal logic formulas. We formulate the problem of deceptive planning with decoy systems and other defenses as a two-player games with asymmetrical information and Boolean payoffs in temporal logic. We use level-2 hypergame with temporal logic objectives to capture the incomplete/incorrect knowledge of the attacker about the network system as a payoff misperception. The true payoff function is private information of the defender. Then, we extend the solution concepts of $omega$-regular games to analyze the attackers rational strategy given her incomplete information. By generalizing the solution of level-2 hypergame in the normal form to extensive form, we extend the solutions of games with safe temporal logic objectives to decide whether the defender can ensure security properties to be satisfied with probability one, given any possible strategy that is perceived to be rational by the attacker. Further, we use the solution of games with co-safe (reachability) temporal logic objectives to determine whether the defender can engage the attacker, by directing the attacker to a high-fidelity honeypot. The effectiveness of the proposed synthesis methods is illustrated with synthetic network systems with honeypots.



rate research

Read More

Synthesizing a program that realizes a logical specification is a classical problem in computer science. We examine a particular type of program synthesis, where the objective is to synthesize a strategy that reacts to a potentially adversarial environment while ensuring that all executions satisfy a Linear Temporal Logic (LTL) specification. Unfortunately, exact methods to solve so-called LTL synthesis via logical inference do not scale. In this work, we cast LTL synthesis as an optimization problem. We employ a neural network to learn a Q-function that is then used to guide search, and to construct programs that are subsequently verified for correctness. Our method is unique in combining search with deep learning to realize LTL synthesis. In our experiments the learned Q-function provides effective guidance for synthesis problems with relatively small specifications.
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in addition to defense actions, to create disinformation for the attacker. Thus, we focus on the problem of jointly synthesizing a decoy placement strategy and a deceptive defense strategy that maximally exploits the incomplete information the attacker about the decoy locations. We introduce a model of hypergames on graphs with temporal logic objectives to capture such adversarial interactions with asymmetric information. Using the hypergame model, we analyze the effectiveness of a given decoy placement, quantified by the set of deceptive winning states where the defender can prevent the attacker from satisfying the attack objective given its incomplete information about decoy locations. Then, we investigate how to place decoys to maximize the defenders deceptive winning region. Considering the large search space for all possible decoy allocation strategies, we incorporate the idea of compositional synthesis from formal methods and show that the objective function in the class of decoy allocation problem is monotone and non-decreasing. We derive the sufficient conditions under which the objective function for the decoy allocation problem is submodular, or supermodular, respectively. We show a sub-optimal allocation can be efficiently computed by iteratively composing the solutions of hypergames with a subset of decoys and the solution of a hypergame given a single decoy. We use a running example to illustrate the proposed method.
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose reactive risk signal interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable propositions that may model humans as well as random environmental events such as sensor failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited to) the Conditional Value-at-Risk, to measure the risk of violating certain spatial specifications. Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise a game-based approach. Third, we propose a reactive planning and control framework for dynamical control systems under ReRiSITL specifications.
We study the synthesis of policies for multi-agent systems to implement spatial-temporal tasks. We formalize the problem as a factored Markov decision process subject to so-called graph temporal logic specifications. The transition function and the spatial-temporal task of each agent depend on the agent itself and its neighboring agents. The structure in the model and the specifications enable to develop a distributed algorithm that, given a factored Markov decision process and a graph temporal logic formula, decomposes the synthesis problem into a set of smaller synthesis problems, one for each agent. We prove that the algorithm runs in time linear in the total number of agents. The size of the synthesis problem for each agent is exponential only in the number of neighboring agents, which is typically much smaller than the number of agents. We demonstrate the algorithm in case studies on disease control and urban security. The numerical examples show that the algorithm can scale to hundreds of agents.
We develop a probabilistic control algorithm, $texttt{GTLProCo}$, for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently-proposed language called graph temporal logic (GTL). By constraining the distribution of the swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety, progress, and response. $texttt{GTLProCo}$, agnostic to the number of agents comprising the swarm, controls the density distribution of the swarm in a decentralized and probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time evolution of the density distribution under the GTL constraints. We first identify a subset of GTL, namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain to either linear or semi-definite programs. Then, in the general case, we formulate the synthesis of the Markov chain as a mixed-integer nonlinear program (MINLP). We exploit the structure of the problem to provide an efficient sequential mixed-integer linear programming scheme with trust regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least three orders of magnitude faster than off-the-shelf MINLP solvers and illustrate the effectiveness of $texttt{GTLProCo}$ in several swarm scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا