Do you want to publish a course? Click here

Subgraphs of large connectivity and chromatic number

75   0   0.0 ( 0 )
 Added by Bhargav Narayanan
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Resolving a problem raised by Norin, we show that for each $k in mathbb{N}$, there exists an $f(k) le 7k$ such that every graph $G$ with chromatic number at least $f(k)+1$ contains a subgraph $H$ with both connectivity and chromatic number at least $k$. This result is best-possible up to multiplicative constants, and sharpens earlier results of Alon-Kleitman-Thomassen-Saks-Seymour from 1987 showing that $f(k) = O(k^3)$, and of Chudnovsky-Penev-Scott-Trotignon from 2013 showing that $f(k) = O(k^2)$. Our methods are robust enough to handle list colouring as well: we also show that for each $k in mathbb{N}$, there exists an $f_ell(k) le 4k$ such that every graph $G$ with list chromatic number at least $f_ell(k)+1$ contains a subgraph $H$ with both connectivity and list chromatic number at least $k$. This result is again best-possible up to multiplicative constants; here, unlike with $f(cdot)$, even the existence of $f_ell(cdot)$ appears to have been previously unknown.



rate research

Read More

123 - Ilkyoo Choi , Ringi Kim , 2018
The chromatic number of a graph is the minimum $k$ such that the graph has a proper $k$-coloring. There are many coloring parameters in the literature that are proper colorings that also forbid bicolored subgraphs. Some examples are $2$-distance coloring, acyclic coloring, and star coloring, which forbid a bicolored path on three vertices, bicolored cycles, and a bicolored path on four vertices, respectively. This notion was first suggested by Grunbaum in 1973, but no specific name was given. We revive this notion by defining an $H$-avoiding $k$-coloring to be a proper $k$-coloring that forbids a bicolored subgraph $H$. When considering the class $mathcal C$ of graphs with no $F$ as an induced subgraph, it is not hard to see that every graph in $mathcal C$ has bounded chromatic number if and only if $F$ is a complete graph of size at most two. We study this phenomena for the class of graphs with no $F$ as a subgraph for $H$-avoiding coloring. We completely characterize all graphs $F$ where the class of graphs with no $F$ as a subgraph has bounded $H$-avoiding chromatic number for a large class of graphs $H$. As a corollary, our main result implies a characterization of graphs $F$ where the class of graphs with no $F$ as a subgraph has bounded star chromatic number. We also obtain a complete characterization for the acyclic chromatic number.
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
144 - Mikhail Isaev , Mihyun Kang 2021
We determine the asymptotic behaviour of the chromatic number of exchangeable random graphs defined by step-regulated graphons. Furthermore, we show that the upper bound holds for a general graphon. We also extend these results to sparse random graphs obtained by percolations on graphons.
A signed graph is a pair $(G, sigma)$, where $G$ is a graph and $sigma: E(G) to {+, -}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, sigma)$ a circular $r$-coloring of $(G, sigma)$ is an assignment $psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $sigma(e)=+$, then $psi(u)$ and $psi(v)$ have distance at least $1$, and if $sigma(e)=-$, then $psi(v)$ and the antipodal of $psi(u)$ have distance at least $1$. The circular chromatic number $chi_c(G, sigma)$ of a signed graph $(G, sigma)$ is the infimum of those $r$ for which $(G, sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $max{chi_c(G, sigma): sigma text{ is a signature of $G$}}$. We study basic properties of circular coloring of signed graphs and develop tools for calculating $chi_c(G, sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular, we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of M{a}v{c}ajov{a}, Raspaud, and v{S}koviera.
While the game chromatic number of a forest is known to be at most 4, no simple criteria are known for determining the game chromatic number of a forest. We first state necessary and sufficient conditions for forests with game chromatic number 2 and then investigate the differences between forests with game chromatic number 3 and 4. In doing so, we present a minimal example of a forest with game chromatic number 4, criteria for determining the game chromatic number of a forest without vertices of degree 3, and an example of a forest with maximum degree 3 and game chromatic number 4.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا