Do you want to publish a course? Click here

The first blazar observed at z>6

85   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of PSO J030947.49+271757.31, the radio brightest (23.7 mJy at 1.4 GHz) active galactic nucleus (AGN) at z>6.0. It was selected by cross-matching the NRAO VLA Sky Survey and the Panoramic Survey Telescope and Rapid Response System PS1 databases and its high-z nature was confirmed by a dedicated spectroscopic observation at the Large Binocular Telescope. A pointed Neil Gehrels $Swift$ Observatory XRT observation allowed us to measure a flux of $sim$3.4$times$10$^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the [0.5-10] keV energy band, which also makes this object the X-ray brightest AGN ever observed at z>6.0. Its flat radio spectrum ($alpha_{ u r}$<0.5), very high radio loudness (R>10$^3$), and strong X-ray emission, compared to the optical, support the hypothesis of the blazar nature of this source. %i.e. a radio-loud (RL) AGN with the relativistic jet pointed toward us. Assuming that this is the only blazar at this redshift in the surveyed area of sky, we derive a space density of blazars at z$sim$6 and with M$_{1450 mbox{AA}}$ < -25.1 of 5.5$^{+11.2}_{-4.6}$$times$10$^{-3}$ Gpc$^{-3}$. From this number, and assuming a reasonable value of the bulk velocity of the jet ($Gamma$=10), we can also infer a space density of the entire radio-loud AGN population at z$sim$6 with the same optical/UV absolute magnitude of 1.10$^{+2.53}_{-0.91}$ Gpc$^{-3}$. Larger samples of blazars will be necessary to better constrain these estimates.



rate research

Read More

214 - Renyue Cen 2010
In the context stellar reionization in the standard cold dark matter model, we analyze observations at z~6 and are able to draw three significant conclusions with respect to star formation and the state of the intergalactic medium (IGM) at z~6. (1) An initial stellar mass function (IMF) more efficient, by a factor of 10-20, in producing ionizing photons than the standard Salpeter IMF is required at z~6. This may be achieved by having either (A) a metal-enriched IMF with and a lower mass cutoff of >= 30Msun or (B) 2-4% of stellar mass being Population III massive metal-free stars at z~6. While there is no compelling physical reason or observational evidence to support (A), (B) could be fulfilled plausibly by continued existence of some pockets of uncontaminated, metal-free gas for star formation. (2) The volume-weighted neutral fraction of the IGM of <f_HI>_V~ 10^-4 at z=5.8 inferred from the SDSS observations of QSO absorption spectra provides enough information to ascertain that reionization is basically complete with at most ~0.1-1% of IGM that is un-ionized at z=5.8. (3) Barring some extreme evolution of the IMF, the neutral fraction of the IGM is expected to rise quickly toward high redshift from the point of HII bubble percolation, with the mean neutral fraction of the IGM expected to reach 6-12% at z=6.5, 13-27% at z=7.7 and 22-38% at z=8.8.
QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2<z<5, the case for excess galaxy clustering around QSOs at z>6 is less clear. Previous studies with HST have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z=6.4 using the large field of view of the Suprime-Cam (34 x 27). Newly-installed CCDs allowed us to select Lyman break galaxies (LBG) at z~6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ~10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ~3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale. This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in its vicinity, or (2) that star-formation closest to the QSO occurs mostly in an obscured mode that is missed by our UV selection.
We present the discovery and properties of DESJ014132.4-542749.9 (DES0141-54), a new powerful radio-loud active galactic nucleus (AGN) in the early Universe (z=5.0). It was discovered by cross-matching the first data release of the Dark Energy Survey (DES DR1) with the Sidney University Molonglo Survey (SUMSS) radio catalog at 0.843 GHz. This object is the first radio-loud AGN at high redshift discovered in the DES. The radio properties of DES0141-54, namely its very large radio-loudness (R>10$^{4}$), the high radio luminosity (L$_{0.8 GHz}$=1.73$times$10$^{28}$ W Hz$^{-1}$), and the flatness of the radio spectrum ($alpha$=0.35) up to very high frequencies (120 GHz in the sources rest frame), classify this object as a blazar, meaning, a radio-loud AGN observed along the relativistic jet axis. However, the X--ray luminosity of DESJ0141-54 is much lower compared to those of the high redshift (z$geq$4.5) blazars discovered so far. Moreover its X-ray-to-radio luminosity ratio (log($frac{L_{[0.5-10]keV}}{L_{1.4GHz}}$)=9.96$pm$0.30 Hz) is small also when compared to lower redshift blazars: only 2% of the low-z population has a similar ratio. By modeling the spectral energy distribution we found that this peculiar X--ray weakness and the powerful radio emission could be related to a particularly high value of the magnetic field. Finally, the mass of the central black hole is relatively small (M$_{BH}$ = 3-8 $times$10$^8$ M$_{odot}$) compared to other confirmed blazars at similar redshift, making DES0141-54 the radio-loud AGN that host the smallest supermassive black hole ever discovered at z$geq$5.
We searched for high-z quasars within the X-ray source population detected in the contiguous $sim 140^2$ eFEDS field observed by eROSITA during the performance verification phase. We collected the available spectroscopic information in the field, including the sample of all currently known optically selected z>5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample. We report the X-ray detection of an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 (z=5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that the quasar could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 suggest that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes. The detection of this source allows us to place the first constraints on the XLF at z>5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at $zsim 6$ beyond $L_*$. The population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect $sim 90$ X-ray luminous AGNs at redshifts 5.7<z<6.4 in the full-sky survey (De+RU).
B2 1023+25 is an extremely radio-loud quasar at z=5.3 which was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is ~5.5x10^(-14) erg cm^(-2)s^(-1) (5-10keV) and the photon spectral index is Gamma_X=1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of ~3deg, and has significant Doppler boosting, with a large bulk Lorentz factor ~13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray Universe and to study extremely active supermassive black holes located at very high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا