Do you want to publish a course? Click here

Topological quantum phase transitions retrieved through unsupervised machine learning

144   0   0.0 ( 0 )
 Added by Yanming Che
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.



rate research

Read More

Machine learning has emerged as a promising approach to study the properties of many-body systems. Recently proposed as a tool to classify phases of matter, the approach relies on classical simulation methods$-$such as Monte Carlo$-$which are known to experience an exponential slowdown when simulating certain quantum systems. To overcome this slowdown while still leveraging machine learning, we propose a variational quantum algorithm which merges quantum simulation and quantum machine learning to classify phases of matter. Our classifier is directly fed labeled states recovered by the variational quantum eigensolver algorithm, thereby avoiding the data reading slowdown experienced in many applications of quantum enhanced machine learning. We propose families of variational ansatz states that are inspired directly by tensor networks. This allows us to use tools from tensor network theory to explain properties of the phase diagrams the presented method recovers. Finally, we propose a nearest-neighbour (checkerboard) quantum neural network. This majority vote quantum classifier is successfully trained to recognize phases of matter with $99%$ accuracy for the transverse field Ising model and $94%$ accuracy for the XXZ model. These findings suggest that our merger between quantum simulation and quantum enhanced machine learning offers a fertile ground to develop computational insights into quantum systems.
The study of topological properties by machine learning approaches has attracted considerable interest recently. Here we propose machine learning the topological invariants that are unique in non-Hermitian systems. Specifically, we train neural networks to predict the winding of eigenvalues of four prototypical non-Hermitian Hamiltonians on the complex energy plane with nearly $100%$ accuracy. Our demonstrations in the non-Hermitian Hatano-Nelson model, Su-Schrieffer-Heeger model and generalized Aubry-Andre-Harper model in one dimension, and two-dimensional Dirac fermion model with non-Hermitian terms show the capability of the neural networks in exploring topological invariants and the associated topological phase transitions and topological phase diagrams in non-Hermitian systems. Moreover, the neural networks trained by a small data set in the phase diagram can successfully predict topological invariants in untouched phase regions. Thus, our work paves the way to revealing non-Hermitian topology with the machine learning toolbox.
Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These approaches are shown to be effective at simulating magnetic structures and dynamics in a wide range of materials. Using large numbers of simulations the effectiveness of machine learning approaches are assessed. Principal component analysis and nonlinear autoencoders are considered with the latter found to provide a high degree of compression and to be highly suited to neutron scattering problems. Agglomerative heirarchical clustering in the latent space is shown to be effective at extracting phase diagrams of behavior and features in an automated way that aid understanding and interpretation. The autoencoders are also well suited to optimizing model parameters and were found to be highly advantageous over conventional fitting approaches including being tolerant of artifacts in untreated data. The potential of machine learning to automate complex data analysis tasks including the inversion of neutron scattering data into models and the processing of large volumes of multidimensional data is assessed. Directions for future developments are considered and machine learning argued to have high potential for impact on neutron science generally.
The Landau description of phase transitions relies on the identification of a local order parameter that indicates the onset of a symmetry-breaking phase. In contrast, topological phase transitions evade this paradigm and, as a result, are harder to identify. Recently, machine learning techniques have been shown to be capable of characterizing topological order in the presence of human supervision. Here, we propose an unsupervised approach based on diffusion maps that learns topological phase transitions from raw data without the need of manual feature engineering. Using bare spin configurations as input, the approach is shown to be capable of classifying samples of the two-dimensional XY model by winding number and capture the Berezinskii-Kosterlitz-Thouless transition. We also demonstrate the success of the approach on the Ising gauge theory, another paradigmatic model with topological order. In addition, a connection between the output of diffusion maps and the eigenstates of a quantum-well Hamiltonian is derived. Topological classification via diffusion maps can therefore enable fully unsupervised studies of exotic phases of matter.
Both experimental and computational methods for the exploration of structure, functionality, and properties of materials often necessitate the search across broad parameter spaces to discover optimal experimental conditions and regions of interest in the image space or parameter space of computational models. The direct grid search of the parameter space tends to be extremely time-consuming, leading to the development of strategies balancing exploration of unknown parameter spaces and exploitation towards required performance metrics. However, classical Bayesian optimization strategies based on the Gaussian process (GP) do not readily allow for the incorporation of the known physical behaviors or past knowledge. Here we explore a hybrid optimization/exploration algorithm created by augmenting the standard GP with a structured probabilistic model of the expected systems behavior. This approach balances the flexibility of the non-parametric GP approach with a rigid structure of physical knowledge encoded into the parametric model. The fully Bayesian treatment of the latter allows additional control over the optimization via the selection of priors for the model parameters. The method is demonstrated for a noisy version of the classical objective function used to evaluate optimization algorithms and further extended to physical lattice models. This methodology is expected to be universally suitable for injecting prior knowledge in the form of physical models and past data in the Bayesian optimization framework
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا