No Arabic abstract
Machine learning has emerged as a promising approach to study the properties of many-body systems. Recently proposed as a tool to classify phases of matter, the approach relies on classical simulation methods$-$such as Monte Carlo$-$which are known to experience an exponential slowdown when simulating certain quantum systems. To overcome this slowdown while still leveraging machine learning, we propose a variational quantum algorithm which merges quantum simulation and quantum machine learning to classify phases of matter. Our classifier is directly fed labeled states recovered by the variational quantum eigensolver algorithm, thereby avoiding the data reading slowdown experienced in many applications of quantum enhanced machine learning. We propose families of variational ansatz states that are inspired directly by tensor networks. This allows us to use tools from tensor network theory to explain properties of the phase diagrams the presented method recovers. Finally, we propose a nearest-neighbour (checkerboard) quantum neural network. This majority vote quantum classifier is successfully trained to recognize phases of matter with $99%$ accuracy for the transverse field Ising model and $94%$ accuracy for the XXZ model. These findings suggest that our merger between quantum simulation and quantum enhanced machine learning offers a fertile ground to develop computational insights into quantum systems.
The discovery of topological features of quantum states plays an important role in modern condensed matter physics and various artificial systems. Due to the absence of local order parameters, the detection of topological quantum phase transitions remains a challenge. Machine learning may provide effective methods for identifying topological features. In this work, we show that the unsupervised manifold learning can successfully retrieve topological quantum phase transitions in momentum and real space. Our results show that the Chebyshev distance between two data points sharpens the characteristic features of topological quantum phase transitions in momentum space, while the widely used Euclidean distance is in general suboptimal. Then a diffusion map or isometric map can be applied to implement the dimensionality reduction, and to learn about topological quantum phase transitions in an unsupervised manner. We demonstrate this method on the prototypical Su-Schrieffer-Heeger (SSH) model, the Qi-Wu-Zhang (QWZ) model, and the quenched SSH model in momentum space, and further provide implications and demonstrations for learning in real space, where the topological invariants could be unknown or hard to compute. The interpretable good performance of our approach shows the capability of manifold learning, when equipped with a suitable distance metric, in exploring topological quantum phase transitions.
Machine learning-inspired techniques have emerged as a new paradigm for analysis of phase transitions in quantum matter. In this work, we introduce a supervised learning algorithm for studying critical phenomena from measurement data, which is based on iteratively training convolutional networks of increasing complexity, and test it on the transverse field Ising chain and q=6 Potts model. At the continuous Ising transition, we identify scaling behavior in the classification accuracy, from which we infer a characteristic classification length scale. It displays a power-law divergence at the critical point, with a scaling exponent that matches with the diverging correlation length. Our algorithm correctly identifies the thermodynamic phase of the system and extracts scaling behavior from projective measurements, independently of the basis in which the measurements are performed. Furthermore, we show the classification length scale is absent for the $q=6$ Potts model, which has a first order transition and thus lacks a divergent correlation length. The main intuition underlying our finding is that, for measurement patches of sizes smaller than the correlation length, the system appears to be at the critical point, and therefore the algorithm cannot identify the phase from which the data was drawn.
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it is highly desirable to reconfigure the connectivity of the device, which for superconducting quantum processors is determined at fabrication. In addition, we require a careful design of control lines and couplings to resonators for measurements. Therefore, it is a cumbersome and slow undertaking to fabricate a new device for each problem we want to solve. Here we periodically drive a one-dimensional chain to engineer effective Hamiltonians that simulate arbitrary connectivities. We demonstrate the capability of our method by engineering driving sequences to simulate star, all-to-all, and ring connectivities. We also simulate a minimal example of the 3-SAT problem including three-body interactions, which are difficult to realize experimentally. Our results open a new paradigm to perform quantum simulation in near term quantum devices by enabling us to stroboscopically simulate arbitrary Hamiltonians with a single device and optimized driving sequences
The classification of big data usually requires a mapping onto new data clusters which can then be processed by machine learning algorithms by means of more efficient and feasible linear separators. Recently, Lloyd et al. have advanced the proposal to embed classical data into quantum ones: these live in the more complex Hilbert space where they can get split into linearly separable clusters. Here, we implement these ideas by engineering two different experimental platforms, based on quantum optics and ultra-cold atoms respectively, where we adapt and numerically optimize the quantum embedding protocol by deep learning methods, and test it for some trial classical data. We perform also a similar analysis on the Rigetti superconducting quantum computer. Therefore, we find that the quantum embedding approach successfully works also at the experimental level and, in particular, we show how different platforms could work in a complementary fashion to achieve this task. These studies might pave the way for future investigations on quantum machine learning techniques especially based on hybrid quantum technologies.
Quantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorder. The latter, dubbed many-body localization (MBL) phenomenon, describes the non-ergodic behavior that is dynamically identified by the preservation of local information and slow entanglement growth. Here, we provide a precise observation of this same phenomenology in the case the onsite energy landscape is not disordered, but rather linearly varied, emulating the Stark MBL. To this end, we construct a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model. Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers, signaling the onset of quantum advantage, thus bridging the way for quantum computation as a resource for solving out-of-equilibrium many-body problems.