No Arabic abstract
The critical phases, being delocalized but non-ergodic, are fundamental phases which are different from both the many-body localization and ergodic extended quantum phases, and have so far not been realized in experiment. Here we propose to realize such critical phases with and without interaction based on a topological optical Raman lattice scheme, which possesses one-dimensional spin-orbit coupling and an incommensurate Zeeman potential. We demonstrate the existence of both the noninteracting and many-body critical phases, which can coexist with the topological phase, and show that the critical-localization transition coincides with the topological phase boundary in noninteracting regime. The dynamical detection of the critical phases is proposed and studied in detail. Finally, we demonstrate how the proposed critical phases can be achieved based on the current cold atom experiments. This work paves the way to observe the novel critical phases.
We find an optical Raman lattice without spin-orbit coupling showing chiral topological orders for cold atoms. Two incident plane-wave lasers are applied to generate simultaneously a double-well square lattice and periodic Raman couplings, the latter of which drive the nearest-neighbor hopping and create a staggered flux pattern across the lattice. Such a minimal setup is can yield the quantum anomalous Hall effect in the single particle regime, while in the interacting regime it achieves the $J_1$-$J_2$-$K$ model with all parameters controllable, which supports a chiral spin liquid phase. We further show that heating in the present optical Raman lattice is reduced by more than one order of magnitude compared with the conventional laser-assisted tunneling schemes. This suggests that the predicted topological states be well reachable with the current experimental capability.
Symmetries play a central role in single-particle localization. Recent research focused on many-body localized (MBL) systems, characterized by new kind of integrability, and by the area-law entanglement of eigenstates. We investigate the effect of a non-Abelian $SU(2)$ symmetry on the dynamical properties of a disordered Heisenberg chain. While $SU(2)$ symmetry is inconsistent with the conventional MBL, a new non-ergodic regime is possible. In this regime, the eigenstates exhibit faster than area-law, but still a strongly sub-thermal scaling of entanglement entropy. Using exact diagonalization, we establish that this non-ergodic regime is indeed realized in the strongly disordered Heisenberg chains. We use real-space renormalization group (RSRG) to construct approximate excited eigenstates, and show their accuracy for systems of size up to $L=26$. As disorder strength is decreased, a crossover to the thermalizing phase occurs. To establish the ultimate fate of the non-ergodic regime in the thermodynamic limit, we develop a novel approach for describing many-body processes that are usually neglected by RSRG, accessing systems of size $L>2000$. We characterize the resonances that arise due to such processes, finding that they involve an ever growing number of spins as the system size is increased. The probability of finding resonances grows with the system size. Even at strong disorder, we can identify a large lengthscale beyond which resonances proliferate. Presumably, this eventually would drive the system to a thermalizing phase. However, the extremely long thermalization time scales indicate that a broad non-ergodic regime will be observable experimentally. Our study demonstrates that symmetries control dynamical properties of disordered, many-body systems. The approach introduced here provides a versatile tool for describing a broad range of disordered many-body systems.
We introduce a non-Abelian kagome lattice model that has both time-reversal and inversion symmetries and study the flat band physics and topological phases of this model. Due to the coexistence of both time-reversal and inversion symmetries, the energy bands consist of three doubly degenerate bands whose energy and conditions for the presence of flat bands could be obtained analytically, allowing us to tune the flat band with respect to the other two dispersive bands from the top to the middle and then to the bottom of the three bands. We further study the gapped phases of the model and show that they belong to the same phase as the band gaps only close at discrete points of the parameter space, making any two gapped phases adiabatically connected to each other without closing the band gap. Using the Pfaffian approach based on the time-reversal symmetry and parity characterization from the inversion symmetry, we calculate the bulk topological invariants and demonstrate that the unique gapped phases belong to the $Z_2$ quantum spin Hall phase, which is further confirmed by the edge state calculations.
Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum information without decoherence, making them promising for use as quantum memories. While FSPT order cannot be detected by any local measurement, here we construct non-local string order parameters that directly measure general 1d FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising-FSPT, which can be implemented with existing quantum computing hardware. We devise an interferometric scheme to directly measure the non-local string order using only simple one- and two- qubit operations and single-qubit measurements.
Here we study the phase diagram of the Aubry-Andre-Harper model in the presence of strong interactions as the strength of the quasiperiodic potential is varied. Previous work has established the existence of many-body localized phase at large potential strength; here, we find a rich phase diagram in the delocalized regime characterized by spin transport and unusual correlations. We calculate the non-equilibrium steady states of a boundary-driven strongly interacting Aubry-Andre-Harper model by employing the time-evolving block decimation algorithm on matrix product density operators. From these steady states, we extract spin transport as a function of system size and quasiperiodic potential strength. This data shows spin transport going from superdiffusive to subdiffusive well before the localization transition; comparing to previous results, we also find that the transport transition is distinct from a transition observed in the speed of operator growth in the model. We also investigate the correlation structure of the steady state and find an unusual oscillation pattern for intermediate values of the potential strength. The unusual spin transport and quantum correlation structure suggest multiple dynamical phases between the much-studied thermal and many-body-localized phases.