Do you want to publish a course? Click here

String order parameters for 1d Floquet Symmetry Protected Topological Phases

87   0   0.0 ( 0 )
 Added by Philipp Dumitrescu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum information without decoherence, making them promising for use as quantum memories. While FSPT order cannot be detected by any local measurement, here we construct non-local string order parameters that directly measure general 1d FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising-FSPT, which can be implemented with existing quantum computing hardware. We devise an interferometric scheme to directly measure the non-local string order using only simple one- and two- qubit operations and single-qubit measurements.



rate research

Read More

Universal driving protocol for symmetry-protected Floquet topological phasesWe propose a universal driving protocol for the realization of symmetry-protected topological phases in $2+1$ dimensional Floquet systems. Our proposal is based on the theoretical analysis of the possible symmetries of a square lattice model with pairwise nearest-neighbor coupling terms. Among the eight possible symmetry operators we identify the two relevant choices for topological phases with either time-reversal, chiral, or particle-hole symmetry. From the corresponding symmetry conditions on the protocol parameters, we obtain the universal driving protocol where each of the symmetries can be realized or broken individually. We provide specific parameter values for the different cases, and demonstrate the existence of symmetry-protected copropagating and counterpropagating topological boundary states. The driving protocol especially allows us to switch between bosonic and fermionic time-reversal symmetry, and thus between a trivial and non-trivial symmetry-protected topological phase, through continuous variation of a parameter.
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
We propose the $mathbb{Z}_Q$ Berry phase as a topological invariant for higher-order symmetry-protected topological (HOSPT) phases for two- and three-dimensional systems. It is topologically stable for electron-electron interactions assuming the gap remains open. As a concrete example, we show that the Berry phase is quantized in $mathbb{Z}_4$ and characterizes the HOSPT phase of the extended Benalcazar-Bernevig-Hughes (BBH) model, which contains the next-nearest neighbor hopping and the intersite Coulomb interactions. In addition, we introduce the $mathbb{Z}_4$ Berry phase for the spin-model-analog of the BBH model, whose topological invariant has not been found so far. Furthermore, we demonstrate the Berry phase is quantized in $mathbb{Z}_4$ for the three-dimensional version of the BBH model. We also confirm the bulk-corner correspondence between the $mathbb{Z}_4$ Berry phase and the corner states in the HOSPT phases.
Topological phenomena are commonly studied in phases of matter which are separated from a trivial phase by an unavoidable quantum phase transition. This can be overly restrictive, leaving out scenarios of practical relevance -- similar to the distinction between liquid water and vapor. Indeed, we show that topological phenomena can be stable over a large part of parameter space even when the bulk is strictly speaking in a trivial phase of matter. In particular, we focus on symmetry-protected topological phases which can be trivialized by extending the symmetry group. The topological Haldane phase in spin chains serves as a paradigmatic example where the $SO(3)$ symmetry is extended to $SU(2)$ by tuning away from the Mott limit. Although the Haldane phase is then adiabatically connected to a product state, we show that characteristic phenomena -- edge modes, entanglement degeneracies and bulk phase transitions -- remain parametrically stable. This stability is due to a separation of energy scales, characterized by quantized invariants which are well-defined when a subgroup of the symmetry only acts on high-energy degrees of freedom. The low-energy symmetry group is a quotient group whose emergent anomalies stabilize edge modes and unnecessary criticality, which can occur in any dimension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا