Do you want to publish a course? Click here

Deeply inelastic scattering structure functions on a hybrid quantum computer

127   0   0.0 ( 0 )
 Added by Niklas Mueller
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path integral as a quantum mechanical path integral over 0+1-dimensional fermionic and bosonic worldlines. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the $F_2$ structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.



rate research

Read More

Quantum devices may overcome limitations of classical computers in studies of nuclear structure functions and parton Wigner distributions of protons and nuclei. In this talk, we discuss a worldline approach to compute nuclear structure functions in the high energy Regge limit of QCD using a hybrid quantum computer, by expressing the fermion determinant in the QCD path integral as a quantum mechanical path integral over $0+1$-dimensional fermionic and bosonic world-lines in background gauge fields. Our simplest example of computing the well-known dipole model result for the structure function $F_2$ in the high energy Regge limit is feasible with NISQ era technology using few qubits and shallow circuits. This example can be scaled up in complexity and extended in scope to compute structure functions, scattering amplitudes and other real-time correlation functions in QCD, relevant for example to describe non-equilibrium transport of quarks and gluons in a Quark-Gluon-Plasma.
We study the use of deep learning techniques to reconstruct the kinematics of the deep inelastic scattering (DIS) process in electron-proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables $Q^2$ and $x$. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection of a training set, the neural networks sufficiently surpass all classical reconstruction methods on most of the kinematic range considered. Rapid access to large samples of simulated data and the ability of neural networks to effectively extract information from large data sets, both suggest that deep learning techniques to reconstruct DIS kinematics can serve as a rigorous method to combine and outperform the classical reconstruction methods.
We consider deep inelastic scattering (DIS) on a large nucleus described as an extremal RN-AdS black hole using the holographic principle. Using the R-current correlators we determine the structure functions as a function Bjorken-x, and map it on a finite but large nucleus with fixed atomic number. The R-ratio of the nuclear structure functions exhibit strong shadowing at low-x.
We consider deep inelastic scattering (DIS) on a dense nucleus described as an extremal RN-AdS black hole with holographic quantum fermions in the bulk. We evaluate the 1-loop fermion contribution to the R-current on the charged black hole, and map it on scattering off a Fermi surface of a dense and large nucleus with fixed atomic number. Near the black hole horizon, the geometry is that of AdS$_2times $R$^3$ where the fermions develop an emergent Fermi surface with anomalous dimensions. DIS scattering off these fermions yields to anomalous partonic distributions mostly at large-x, as well as modified hard scattering rules. The pertinent R-ratio for the black hole is discussed. For comparison, the structure functions and the R-ratio in the probe or dilute limit with no back-reaction on the geometry, are also derived. We formulate a hybrid holographic model for DIS scattering on heavy and light nuclei, which compares favorably to the existing data for Pb, Au, Fe, C and He over a wide range of parton-x.
We calculate the cross section of the electron scattering from a bound nucleon within light-front approximation. The advantage of this approximation is the possibility of systematic account for the off-shell effects which become essential in high energy electro-nuclear processes aimed at probing the nuclear structure at small distances. We derive a new dynamical parameter which allows to control the extent of the off-shellness of electron - bound-nucleon electromagnetic current for different regions of momentum transfer and initial light-cone momenta of the bound nucleon. The derived cross section is compared with the results of other approaches in treating the off-shell effects in electron-nucleon scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا