Do you want to publish a course? Click here

Topological Photonic Tamm-States and the Su-Schrieffer-Heeger Model

163   0   0.0 ( 0 )
 Added by Nuno Peres
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of the band-gaps, whereas if it is topologically trivial the band-gaps host no Tamm states. We connect the disappearance of the Tamm states with a topological transition from a topologically non-trivial system to a topologically trivial one. This topological transition is driven by the modification of the dielectric functions in the unit cell. Our interpretation is further supported by an exact mapping between the solutions of Maxwells equations and the existence of a tight-binding representation of those solutions. We show that the tight-binding representation of the 1D photonic crystal, based on Maxwells equations, corresponds to a Su-Schrieffer-Heeger-type model (SSH-model) for each set of pairs of bands. Expanding this representation near the band edge we show that the system can be described by a Dirac-like Hamiltonian. It allows one to characterize the topology associated with the solution of Maxwells equations via the winding number. In addition, for the infinite system, we provide an analytical expression for the photonic bands from which the band-gaps can be computed.



rate research

Read More

Graphene hybrids, made of thin insulators, graphene, and metals can support propagating acoustic plasmons (AGPs). The metal screening modifies the dispersion relation of usual graphene plasmons leading to slowly propagating plasmons, with record confinement of electromagnetic radiation. Here, we show that a graphene monolayer, covered by a thin dielectric material and an array of metallic nanorods can be used as a robust platform to emulate the Su-Schrieffer-Heeger model. We calculate the Zaks phase of the different plasmonic bands to characterise their topology. The system shows bulk-edge correspondence: strongly localized interface states are generated in the domain walls separating arrays in different topological phases. We find signatures of the nontrivial phase which can directly be probed by far-field mid-IR radiation, hence allowing a direct experimental confirmation of graphene topological plasmons. The robust field enhancement, highly localized nature of the interface states, and their gate-tuned frequencies expand the capabilities of AGP-based devices.
87 - Tetsuyuki Ochiai 2018
A network model that can describe light propagation in one-dimensional ring-resonator arrays with a dimer structure is studied as a Su-Schrieffer-Heeger-type Floquet network. The model can be regarded as a Floquet system without periodic driving and exhibits quasienergy band structures of the ring propagation phase. Resulting band gaps support deterministic edge states depending on hopping S-matrices between adjacent rings. The number of edge states is one if the Zak phase is $pi$. If the Zak phase is 0, the number is either zero or two. The criterion of the latter number is given analytically in terms of the reflection matrix of the semi-infinite system. These properties are directly verified by changing S-matrix parameters and boundary condition continuously.
99 - Simon Lieu 2017
We address the conditions required for a $mathbb{Z}$ topological classification in the most general form of the non-Hermitian Su-Schrieffer-Heeger (SSH) model. Any chirally-symmetric SSH model will possess a conjugated-pseudo-Hermiticity which we show is responsible for a quantized complex Berry phase. Consequently, we provide the first example where the complex Berry phase of a band is used as a quantized invariant to predict the existence of gapless edge modes in a non-Hermitian model. The chirally-broken, $PT$-symmetric model is studied; we suggest an explanation for why the topological invariant is a global property of the Hamiltonian. A geometrical picture is provided by examining eigenvector evolution on the Bloch sphere. We justify our analysis numerically and discuss relevant applications.
Topological physics strongly relies on prototypical lattice model with particular symmetries. We report here on a theoretical and experimental work on acoustic waveguides that is directly mapped to the one-dimensional Su-Schrieffer-Heeger chiral model. Starting from the continuous two dimensional wave equation we use a combination of monomadal approximation and the condition of equal length tube segments to arrive at the wanted discrete equations. It is shown that open or closed boundary conditions topological leads automatically to the existence of edge modes. We illustrate by graphical construction how the edge modes appear naturally owing to a quarter-wavelength condition and the conservation of flux. Furthermore, the transparent chirality of our system, which is ensured by the geometrical constraints allows us to study chiral disorder numerically and experimentally. Our experimental results in the audible regime demonstrate the predicted robustness of the topological edge modes.
Topological properties of quantum systems could provide protection of information against environmental noise, and thereby drastically advance their potential in quantum information processing. Most proposals for topologically protected quantum gates are based on many-body systems, e.g., fractional quantum Hall states, exotic superconductors, or ensembles of interacting spins, bearing an inherent conceptual complexity. Here, we propose and study a topologically protected quantum gate, based on a one-dimensional single-particle tight-binding model, known as the Su-Schrieffer-Heeger chain. The proposed $Y$ gate acts in the two-dimensional zero-energy subspace of a Y junction assembled from three chains, and is based on the spatial exchange of the defects supporting the zero-energy modes. With numerical simulations, we demonstrate that the gate is robust against hopping disorder but is corrupted by disorder in the on-site energy. Then we show that this robustness is topological protection, and that it arises as a joint consequence of chiral symmetry, time-reversal symmetry and the spatial separation of the zero-energy modes bound to the defects. This setup will most likely not lead to a practical quantum computer, nevertheless it does provide valuable insight to aspects of topological quantum computing as an elementary minimal model. Since this model is non-interacting and non-superconducting, its dynamics can be studied experimentally, e.g., using coupled optical waveguides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا