Do you want to publish a course? Click here

Generating Representative Headlines for News Stories

184   0   0.0 ( 0 )
 Added by Xiaotao Gu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Millions of news articles are published online every day, which can be overwhelming for readers to follow. Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption. However, it remains a challenging research problem to efficiently and effectively generate a representative headline for each story. Automatic summarization of a document set has been studied for decades, while few studies have focused on generating representative headlines for a set of articles. Unlike summaries, which aim to capture most information with least redundancy, headlines aim to capture information jointly shared by the story articles in short length, and exclude information that is too specific to each individual article. In this work, we study the problem of generating representative headlines for news stories. We develop a distant supervision approach to train large-scale generation models without any human annotation. This approach centers on two technical components. First, we propose a multi-level pre-training framework that incorporates massive unlabeled corpus with different quality-vs.-quantity balance at different levels. We show that models trained within this framework outperform those trained with pure human curated corpus. Second, we propose a novel self-voting-based article attention layer to extract salient information shared by multiple articles. We show that models that incorporate this layer are robust to potential noises in news stories and outperform existing baselines with or without noises. We can further enhance our model by incorporating human labels, and we show our distant supervision approach significantly reduces the demand on labeled data.



rate research

Read More

This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edite
Emotion stimulus extraction is a fine-grained subtask of emotion analysis that focuses on identifying the description of the cause behind an emotion expression from a text passage (e.g., in the sentence I am happy that I passed my exam the phrase passed my exam corresponds to the stimulus.). Previous work mainly focused on Mandarin and English, with no resources or models for German. We fill this research gap by developing a corpus of 2006 German news headlines annotated with emotions and 811 instances with annotations of stimulus phrases. Given that such corpus creation efforts are time-consuming and expensive, we additionally work on an approach for projecting the existing English GoodNewsEveryone (GNE) corpus to a machine-translated German version. We compare the performance of a conditional random field (CRF) model (trained monolingually on German and cross-lingually via projection) with a multilingual XLM-RoBERTa (XLM-R) model. Our results show that training with the German corpus achieves higher F1 scores than projection. Experiments with XLM-R outperform their respective CRF counterparts.
Measuring the congruence between two texts has several useful applications, such as detecting the prevalent deceptive and misleading news headlines on the web. Many works have proposed machine learning based solutions such as text similarity between the headline and body text to detect the incongruence. Text similarity based methods fail to perform well due to different inherent challenges such as relative length mismatch between the news headline and its body content and non-overlapping vocabulary. On the other hand, more recent works that use headline guided attention to learn a headline derived contextual representation of the news body also result in convoluting overall representation due to the news bodys lengthiness. This paper proposes a method that uses inter-mutual attention-based semantic matching between the original and synthetically generated headlines, which utilizes the difference between all pairs of word embeddings of words involved. The paper also investigates two more variations of our method, which use concatenation and dot-products of word embeddings of the words of original and synthetic headlines. We observe that the proposed method outperforms prior arts significantly for two publicly available datasets.
We propose a method for online news stream clustering that is a variant of the non-parametric streaming K-means algorithm. Our model uses a combination of sparse and dense document representations, aggregates document-cluster similarity along these multiple representations and makes the clustering decision using a neural classifier. The weighted document-cluster similarity model is learned using a novel adaptation of the triplet loss into a linear classification objective. We show that the use of a suitable fine-tuning objective and external knowledge in pre-trained transformer models yields significant improvements in the effectiveness of contextual embeddings for clustering. Our model achieves a new state-of-the-art on a standard stream clustering dataset of English documents.
In this paper we propose a deep learning method for performing attributed-based music-to-image translation. The proposed method is applied for synthesizing visual stories according to the sentiment expressed by songs. The generated images aim to induce the same feelings to the viewers, as the original song does, reinforcing the primary aim of music, i.e., communicating feelings. The process of music-to-image translation poses unique challenges, mainly due to the unstable mapping between the different modalities involved in this process. In this paper, we employ a trainable cross-modal translation method to overcome this limitation, leading to the first, to the best of our knowledge, deep learning method for generating sentiment-aware visual stories. Various aspects of the proposed method are extensively evaluated and discussed using different songs.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا