No Arabic abstract
Measuring the congruence between two texts has several useful applications, such as detecting the prevalent deceptive and misleading news headlines on the web. Many works have proposed machine learning based solutions such as text similarity between the headline and body text to detect the incongruence. Text similarity based methods fail to perform well due to different inherent challenges such as relative length mismatch between the news headline and its body content and non-overlapping vocabulary. On the other hand, more recent works that use headline guided attention to learn a headline derived contextual representation of the news body also result in convoluting overall representation due to the news bodys lengthiness. This paper proposes a method that uses inter-mutual attention-based semantic matching between the original and synthetically generated headlines, which utilizes the difference between all pairs of word embeddings of words involved. The paper also investigates two more variations of our method, which use concatenation and dot-products of word embeddings of the words of original and synthetic headlines. We observe that the proposed method outperforms prior arts significantly for two publicly available datasets.
Millions of news articles are published online every day, which can be overwhelming for readers to follow. Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption. However, it remains a challenging research problem to efficiently and effectively generate a representative headline for each story. Automatic summarization of a document set has been studied for decades, while few studies have focused on generating representative headlines for a set of articles. Unlike summaries, which aim to capture most information with least redundancy, headlines aim to capture information jointly shared by the story articles in short length, and exclude information that is too specific to each individual article. In this work, we study the problem of generating representative headlines for news stories. We develop a distant supervision approach to train large-scale generation models without any human annotation. This approach centers on two technical components. First, we propose a multi-level pre-training framework that incorporates massive unlabeled corpus with different quality-vs.-quantity balance at different levels. We show that models trained within this framework outperform those trained with pure human curated corpus. Second, we propose a novel self-voting-based article attention layer to extract salient information shared by multiple articles. We show that models that incorporate this layer are robust to potential noises in news stories and outperform existing baselines with or without noises. We can further enhance our model by incorporating human labels, and we show our distant supervision approach significantly reduces the demand on labeled data.
Emotion stimulus extraction is a fine-grained subtask of emotion analysis that focuses on identifying the description of the cause behind an emotion expression from a text passage (e.g., in the sentence I am happy that I passed my exam the phrase passed my exam corresponds to the stimulus.). Previous work mainly focused on Mandarin and English, with no resources or models for German. We fill this research gap by developing a corpus of 2006 German news headlines annotated with emotions and 811 instances with annotations of stimulus phrases. Given that such corpus creation efforts are time-consuming and expensive, we additionally work on an approach for projecting the existing English GoodNewsEveryone (GNE) corpus to a machine-translated German version. We compare the performance of a conditional random field (CRF) model (trained monolingually on German and cross-lingually via projection) with a multilingual XLM-RoBERTa (XLM-R) model. Our results show that training with the German corpus achieves higher F1 scores than projection. Experiments with XLM-R outperform their respective CRF counterparts.
This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edite
Media plays an important role in shaping public opinion. Biased media can influence people in undesirable directions and hence should be unmasked as such. We observe that featurebased and neural text classification approaches which rely only on the distribution of low-level lexical information fail to detect media bias. This weakness becomes most noticeable for articles on new events, where words appear in new contexts and hence their bias predictiveness is unclear. In this paper, we therefore study how second-order information about biased statements in an article helps to improve detection effectiveness. In particular, we utilize the probability distributions of the frequency, positions, and sequential order of lexical and informational sentence-level bias in a Gaussian Mixture Model. On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias, whereas their exact sequential order is secondary. Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.
False information spread via the internet and social media influences public opinion and user activity, while generative models enable fake content to be generated faster and more cheaply than had previously been possible. In the not so distant future, identifying fake content generated by deep learning models will play a key role in protecting users from misinformation. To this end, a dataset containing human and computer-generated headlines was created and a user study indicated that humans were only able to identify the fake headlines in 47.8% of the cases. However, the most accurate automatic approach, transformers, achieved an overall accuracy of 85.7%, indicating that content generated from language models can be filtered out accurately.