Do you want to publish a course? Click here

Electron-Phonon Interactions Using the PAW Method and Wannier Functions

78   0   0.0 ( 0 )
 Added by Manuel Engel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an ab-initio density-functional-theory approach for calculating electron-phonon interactions within the projector augmented-wave method. The required electron-phonon matrix elements are defined as the second derivative of the one-electron energies in the PAW method. As the PAW method leads to a generalized eigenvalue problem, the resulting electron-phonon matrix elements lack some symmetries that are usually present for simple eigenvalue problems and all-electron formulations. We discuss the relation between our definition of the electron-phonon matrix element and other formulations. To allow for efficient evaluation of physical properties, we introduce a Wannier-interpolation scheme, again adapted to generalized eigenvalue problems. To explore the methods numerical characteristics, the temperature-dependent band-gap renormalization of diamond is calculated and compared with previous publications. Furthermore, we apply the method to selected binary compounds and show that the obtained zero-point renormalizations agree well with other values found in literature and experiments.



rate research

Read More

We investigate a recently developed approach [P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008); J. Phys. Chem. A 113, 5224 (2009)] that uses maximally localized Wannier functions to evaluate the van der Waals contribution to the total energy of a system calculated with density-functional theory. We test it on a set of atomic and molecular dimers of increasing complexity (argon, methane, ethene, benzene, phthalocyanine, and copper phthalocyanine) and demonstrate that the method, as originally proposed, has a number of shortcomings that hamper its predictive power. In order to overcome these problems, we have developed and implemented a number of improvements to the method and show that these modifications give rise to calculated binding energies and equilibrium geometries that are in closer agreement to results of quantum-chemical coupled-cluster calculations.
The interaction between electrons and lattice vibrations determines key physical properties of materials, including their electrical and heat transport, excited electron dynamics, phase transitions, and superconductivity. We present a new ab initio method that employs atomic orbital (AO) wavefunctions to compute the electron-phonon (e-ph) interactions in materials and interpolate the e-ph coupling matrix elements to fine Brillouin zone grids. We detail the numerical implementation of such AO-based e-ph calculations, and benchmark them against direct density functional theory calculations and Wannier function (WF) interpolation. The key advantages of AOs over WFs for e-ph calculations are outlined. Since AOs are fixed basis functions associated with the atoms, they circumvent the need to generate a material-specific localized basis set with a trial-and-error approach, as is needed in WFs. Therefore, AOs are ideal to compute e-ph interactions in chemically and structurally complex materials for which WFs are challenging to generate, and are also promising for high-throughput materials discovery. While our results focus on AOs, the formalism we present generalizes e-ph calculations to arbitrary localized basis sets, with WFs recovered as a special case.
242 - Emil Prodan 2015
We consider single particle Schrodinger operators with a gap in the en ergy spectrum. We construct a complete, orthonormal basis function set for the inv ariant space corresponding to the spectrum below the spectral gap, which are exponentially localized a round a set of closed surfaces of monotonically increasing sizes. Estimates on the exponential dec ay rate and a discussion of the geometry of these surfaces is included.
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing temperature, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the $G$ peak frequency shift and linewidths in our suspended graphene sample at a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from EPI is found to be reversed above a doping threshold ($hbaromega_G/2$, with $omega_G$ being the frequency of the $G$ phonon).
Electron-phonon ($e$-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons and metal-insulator transitions. First-principles approaches enable accurate calculations of $e$-ph interactions in a wide range of solids. However, they remain an open challenge in correlated electron systems (CES), where density functional theory often fails to describe the ground state. Therefore reliable $e$-ph calculations remain out of reach for many transition metal oxides, high-temperature superconductors, Mott insulators, planetary materials and multiferroics. Here we show first-principles calculations of $e$-ph interactions in CES, using the framework of Hubbard-corrected density functional theory (DFT+$U$ ) and its linear response extension (DFPT+$U$), which can describe the electronic structure and lattice dynamics of many CES. We showcase the accuracy of this approach for a prototypical Mott system, CoO, carrying out a detailed investigation of its $e$-ph interactions and electron spectral functions. While standard DFPT gives unphysically divergent and short-ranged $e$-ph interactions, DFPT+$U$ is shown to remove the divergences and properly account for the long-range Frohlich interaction, allowing us to model polaron effects in a Mott insulator. Our work establishes a broadly applicable and affordable approach for quantitative studies of e-ph interactions in CES, a novel theoretical tool to interpret experiments in this broad class of materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا