No Arabic abstract
Although ligand-binding sites in many proteins contain a high number density of charged side chains that can polarize small organic molecules and influence binding, the magnitude of this effect has not been studied in many systems. Here, we use a quantum mechanics/molecular mechanics (QM/MM) approach in which the ligand is the QM region to compute the ligand polarization energy of 286 protein-ligand complexes from the PDBBind Core Set (release 2016). We observe that the ligand polarization energy is linearly correlated with the magnitude of the electric field acting on the ligand, the magnitude of the induced dipole moment, and the classical polarization energy. The influence of protein and cation charges on the ligand polarization diminishes with the distance and is below 2 kcal/mol at 9 $unicode{x212B}$ and 1 kcal/mol at 12 $unicode{x212B}$. Considering both polarization and solvation appears essential to computing negative binding energies in some crystallographic complexes. Solvation, but not polarization, is essential for achieving moderate correlation with experimental binding free energies.
In haemoglobin (consisting of four globular myoglobin-like subunits), the change from the low-spin (LS) hexacoordinated haem to the high spin (HS) pentacoordinated domed form upon ligand detachment and the reverse process upon ligand binding, represent the transition states that ultimately drive the respiratory function. Visible-ultraviolet light has long been used to mimic the ligand release from the haem by photodissociation, while its recombination was monitored using time-resolved infrared to ultraviolet spectroscopic tools. However, these are neither element- nor spin-sensitive. Here we investigate the transition state in the case of Myoglobin-NO (MbNO) using femtosecond Fe Kalpha and Kbeta non-resonant X-ray emission spectroscopy (XES) at an X-ray free-electron laser upon photolysis of the Fe-NO bond. We find that the photoinduced change from the LS (S = 1/2) MbNO to the HS (S = 2) deoxy-myoglobin (deoxyMb) haem occurs in ca. 800 fs, and that it proceeds via an intermediate (S = 1) spin state. The XES observables also show that upon NO recombination to deoxyMb, the return to the planar MbNO ground state is an electronic relaxation from HS to LS taking place in ca. 30 ps. Thus, the entire ligand dissociation-recombination cycle in MbNO is a spin cross-over followed by a reverse spin cross-over process.
We propose a transform method from a force curve obtained by a surface force apparatus (SFA) to a density distribution of a liquid on a surface of the SFA probe. (We emphasize that the transform method is a theory for the experiment.) In the method, two-body potential between the SFA probe and the solvent sphere is modeled as the soft attractive potential with rigid wall. The model potential is more realistic compared with the rigid potential applied in our earlier work. The introduction of the model potential is the improved point of the present transform method. The transform method is derived based on the statistical mechanics of a simple liquid where the simple liquid is an ensemble of small spheres. To derive the transform method, Kirkwood superposition approximation is used. It is found that the transformation can be done by a sequential computation. It is considered that the solvation structure can be obtained more precisely by using the improved transform method.
Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for a fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.
Many functional units in biology, such as enzymes or molecular motors, are composed of several subunits that can reversibly assemble and disassemble. This includes oligomeric proteins composed of several smaller monomers, as well as protein complexes assembled from a few proteins. By studying the generic spatial transport properties of such proteins, we investigate here whether their ability to reversibly associate and dissociate may confer them a functional advantage with respect to non-dissociating proteins. In uniform environments with position-independent association-dissociation, we find that enhanced diffusion in the monomeric state coupled to reassociation into the functional oligomeric form leads to enhanced reactivity with distant targets. In non-uniform environments with position-dependent association-dissociation, caused e.g. by spatial gradients of an inhibiting chemical, we find that dissociating proteins generically tend to accumulate in regions where they are most stable, a process that we term stabilitaxis.
Many enhanced sampling methods, such as Umbrella Sampling, Metadynamics or Variationally Enhanced Sampling, rely on the identification of appropriate collective variables. For proteins, even small ones, finding appropriate collective variables has proven challenging. Here we suggest that the NMR $S^2$ order parameter can be used to this effect. We trace the validity of this statement to the suggested relation between $S^2$ and entropy. Using the $S^2$ order parameter and a surrogate for the protein enthalpy in conjunction with Metadynamics or Variationally Enhanced Sampling we are able to reversibly fold and unfold a small protein and draw its free energy at a fraction of the time that is needed in unbiased simulations. From a more conceptual point of view this implies describing folding as a resulting from a trade off between entropy and enthalpy. We also use $S^2$ in combination with the free energy flooding method to compute the unfolding rate of this peptide. We repeat this calculation at different temperatures to obtain the unfolding activation energy.