Do you want to publish a course? Click here

Generalized ghost-free propagators in nonlocal field theories

114   0   0.0 ( 0 )
 Added by Luca Buoninfante
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present an iterative method to generate an infinite class of new nonlocal field theories whose propagators are ghost-free. We first examine the scalar field case and show that the pole structure of such generalized propagators possesses the standard two derivative pole and in addition can contain complex conjugate poles which, however, do not spoil at least tree level unitarity as the optical theorem is still satisfied. Subsequently, we define analogous propagators for the fermionic sector which is also devoid of unhealthy degrees of freedom. As a third case, we apply the same construction to gravity and define a new set of theories whose graviton propagators around the Minkowski background are ghost-free. Such a wider class also includes nonlocal theories previously studied, and Einsteins general relativity as a peculiar limit. Moreover, we compute the linearized gravitational potential generated by a static point-like source for several gravitational theories belonging to this new class and show that the nonlocal nature of gravity regularizes the singularity at the origin.



rate research

Read More

We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagrangian and Hamiltonian formulations, and its Cauchy problem and quantization are well-defined. We classify exact nonperturbative solutions of the localized model which can be found via the diffusion equation governing the fields.
516 - Kouichi Nomura , Jiro Soda 2012
We study ghosts in multimetric gravity by combining the mini-superspace and the Hamiltonian constraint analysis. We first revisit bimetric gravity and explain why it is ghost-free. Then, we apply our method to trimetric gravity and clarify when the model contains a ghost. More precisely, we prove trimetric gravity generically contains a ghost. However, if we cut the interaction of a pair of metrics, trimetric gravity becomes ghost-free. We further extend the Hamiltonian analysis to general multimetric gravity and calculate the number of ghosts in various models. Thus, we find multimetric gravity with loop type interactions never becomes ghost-free.
In this paper we propose a wider class of symmetries including the Galilean shift symmetry as a subclass. We will show how to construct ghost-free nonlocal actions, consisting of infinite derivative operators, which are invariant under such symmetries, but whose functional form is not simply given by exponentials of entire functions. Motivated by this, we will consider the case of a scalar field and discuss the pole structure of the propagator which has infinitely many complex conjugate poles, but satisfies the tree-level unitarity. We will also consider the possibility to construct UV complete Galilean theories by showing how the ultraviolet behavior of loop integrals can be ameliorated. Moreover, we will consider kinetic operators respecting the same symmetries in the context of linearized gravity. In such a scenario, the graviton propagator turns out to be ghost-free and the spacetime metric generated by a point-like source is nonsingular. These new nonlocal models can be seen as an infinite derivative generalization of Lee-Wick theories and open a new branch of nonlocal theories.
169 - Marco Frasca 2008
We derive the form of the infrared gluon propagator by proving a mapping in the infrared of the quantum Yang-Mills and $lambdaphi^4$ theories. The equivalence is complete at a classical level. But while at a quantum level, the correspondence is spoiled by quantum fluctuations in the ultraviolet limit, we prove that it holds in the infrared where the coupling constant happens to be very large. The infrared propagator is then obtained from the quantum field theory of the scalar field producing a full spectrum. The results are in fully agreement with recent lattice computations. We get a finite propagator at zero momentum, the ghost propagator going to infinity as $1/p^{2+2kappa}$ with $kappa=0$.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Such a construction is of interest because it is not possible to couple such fields to massless General Relativity in the same way. We show that this theory has the primary constraint necessary to eliminate the Boulware-Deser ghost, thus preserving the attractive properties of both the Galileons and ghost-free massive gravity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا