Do you want to publish a course? Click here

Infrared Gluon and Ghost Propagators

176   0   0.0 ( 0 )
 Added by Marco Frasca
 Publication date 2008
  fields
and research's language is English
 Authors Marco Frasca




Ask ChatGPT about the research

We derive the form of the infrared gluon propagator by proving a mapping in the infrared of the quantum Yang-Mills and $lambdaphi^4$ theories. The equivalence is complete at a classical level. But while at a quantum level, the correspondence is spoiled by quantum fluctuations in the ultraviolet limit, we prove that it holds in the infrared where the coupling constant happens to be very large. The infrared propagator is then obtained from the quantum field theory of the scalar field producing a full spectrum. The results are in fully agreement with recent lattice computations. We get a finite propagator at zero momentum, the ghost propagator going to infinity as $1/p^{2+2kappa}$ with $kappa=0$.



rate research

Read More

We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of seagull cancellations among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.
We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ($simeq 270$MeV) of $Lambda_{ms}$ than the one obtained from the propagators separately($simeq 320$MeV). This argues in favour of significant non-perturbative $sim 1/q^2$ power corrections in the ghost and gluon propagators. We check the self-consistency of the method.
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the Refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice YM simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the RG-improved Curci-Ferrari model.
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon propagator the Pade analysis identifies a pair of complex conjugate poles and a branch cut along the negative real axis of the Euclidean $p^2$ momenta. For the Landau gauge ghost propagator the Pade analysis shows a single pole at $p^2 = 0$ and a branch cut also along the negative real axis of the Euclidean $p^2$ momenta. The method gives precise estimates for the gluon complex poles, that agree well with other estimates found in the literature. For the branch cut the Pade analysis gives, at least, a rough estimate of the corresponding branch point.
Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator by a self-consistent dynamically generated mass parameter, the Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the propagator features a non-trivial set of phases with poles of different nature, leading to the possible interpretation of a confinfing to deconfining phase transition. Inhere, we restore the BRST symmetry which is softly broken by the elimination of gauge copies and provide a BRST-invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge parameter independence of physical results. We also discuss the generation of condensates due to the infrared relevance of infinitesimal Gribov copies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا