Do you want to publish a course? Click here

HRFA: High-Resolution Feature-based Attack

136   0   0.0 ( 0 )
 Added by Sizhe Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Adversarial attacks have long been developed for revealing the vulnerability of Deep Neural Networks (DNNs) by adding imperceptible perturbations to the input. Most methods generate perturbations like normal noise, which is not interpretable and without semantic meaning. In this paper, we propose High-Resolution Feature-based Attack (HRFA), yielding authentic adversarial examples with up to $1024 times 1024$ resolution. HRFA exerts attack by modifying the latent feature representation of the image, i.e., the gradients back propagate not only through the victim DNN, but also through the generative model that maps the feature space to the image space. In this way, HRFA generates adversarial examples that are in high-resolution, realistic, noise-free, and hence is able to evade several denoising-based defenses. In the experiment, the effectiveness of HRFA is validated by attacking the object classification and face verification tasks with BigGAN and StyleGAN, respectively. The advantages of HRFA are verified from the high quality, high authenticity, and high attack success rate faced with defenses.



rate research

Read More

We propose a new adversarial attack to Deep Neural Networks for image classification. Different from most existing attacks that directly perturb input pixels, our attack focuses on perturbing abstract features, more specifically, features that denote styles, including interpretable styles such as vivid colors and sharp outlines, and uninterpretable ones. It induces model misclassfication by injecting imperceptible style changes through an optimization procedure. We show that our attack can generate adversarial samples that are more natural-looking than the state-of-the-art unbounded attacks. The experiment also supports that existing pixel-space adversarial attack detection and defense techniques can hardly ensure robustness in the style related feature space.
Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on models final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.
Trojan (backdoor) attack is a form of adversarial attack on deep neural networks where the attacker provides victims with a model trained/retrained on malicious data. The backdoor can be activated when a normal input is stamped with a certain pattern called trigger, causing misclassification. Many existing trojan attacks have their triggers being input space patches/objects (e.g., a polygon with solid color) or simple input transformations such as Instagram filters. These simple triggers are susceptible to recent backdoor detection algorithms. We propose a novel deep feature space trojan attack with five characteristics: effectiveness, stealthiness, controllability, robustness and reliance on deep features. We conduct extensive experiments on 9 image classifiers on various datasets including ImageNet to demonstrate these properties and show that our attack can evade state-of-the-art defense.
Deep Neural networks have gained lots of attention in recent years thanks to the breakthroughs obtained in the field of Computer Vision. However, despite their popularity, it has been shown that they provide limited robustness in their predictions. In particular, it is possible to synthesise small adversarial perturbations that imperceptibly modify a correctly classified input data, making the network confidently misclassify it. This has led to a plethora of different methods to try to improve robustness or detect the presence of these perturbations. In this paper, we perform an analysis of $beta$-Variational Classifiers, a particular class of methods that not only solve a specific classification task, but also provide a generative component that is able to generate new samples from the input distribution. More in details, we study their robustness and detection capabilities, together with some novel insights on the generative part of the model.
Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. {Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well.} Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا