No Arabic abstract
Trojan (backdoor) attack is a form of adversarial attack on deep neural networks where the attacker provides victims with a model trained/retrained on malicious data. The backdoor can be activated when a normal input is stamped with a certain pattern called trigger, causing misclassification. Many existing trojan attacks have their triggers being input space patches/objects (e.g., a polygon with solid color) or simple input transformations such as Instagram filters. These simple triggers are susceptible to recent backdoor detection algorithms. We propose a novel deep feature space trojan attack with five characteristics: effectiveness, stealthiness, controllability, robustness and reliance on deep features. We conduct extensive experiments on 9 image classifiers on various datasets including ImageNet to demonstrate these properties and show that our attack can evade state-of-the-art defense.
We propose a new adversarial attack to Deep Neural Networks for image classification. Different from most existing attacks that directly perturb input pixels, our attack focuses on perturbing abstract features, more specifically, features that denote styles, including interpretable styles such as vivid colors and sharp outlines, and uninterpretable ones. It induces model misclassfication by injecting imperceptible style changes through an optimization procedure. We show that our attack can generate adversarial samples that are more natural-looking than the state-of-the-art unbounded attacks. The experiment also supports that existing pixel-space adversarial attack detection and defense techniques can hardly ensure robustness in the style related feature space.
Deep neural networks often consist of a great number of trainable parameters for extracting powerful features from given datasets. On one hand, massive trainable parameters significantly enhance the performance of these deep networks. On the other hand, they bring the problem of over-fitting. To this end, dropout based methods disable some elements in the output feature maps during the training phase for reducing the co-adaptation of neurons. Although the generalization ability of the resulting models can be enhanced by these approaches, the conventional binary dropout is not the optimal solution. Therefore, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks and propose a feature distortion method (Disout) for addressing the aforementioned problem. In the training period, randomly selected elements in the feature maps will be replaced with specific values by exploiting the generalization error bound. The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated on several benchmark image datasets.
A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully connected as well as convolutional layers, contain most of the variational parameters that are trained and stored. Compressing a deep neural network to reduce its number of variational parameters but not its prediction power is an important but challenging problem toward the establishment of an optimized scheme in training efficiently these parameters and in lowering the risk of overfitting. Here we show that this problem can be effectively solved by representing linear transformations with matrix product operators (MPOs), which is a tensor network originally proposed in physics to characterize the short-range entanglement in one-dimensional quantum states. We have tested this approach in five typical neural networks, including FC2, LeNet-5, VGG, ResNet, and DenseNet on two widely used data sets, namely, MNIST and CIFAR-10, and found that this MPO representation indeed sets up a faithful and efficient mapping between input and output signals, which can keep or even improve the prediction accuracy with a dramatically reduced number of parameters. Our method greatly simplifies the representations in deep learning, and opens a possible route toward establishing a framework of modern neural networks which might be simpler and cheaper, but more efficient.
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of function approximators based on polynomial expansions. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that $Pi$-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning. The source code is available at url{https://github.com/grigorisg9gr/polynomial_nets}.
Overfitting is one of the most critical challenges in deep neural networks, and there are various types of regularization methods to improve generalization performance. Injecting noises to hidden units during training, e.g., dropout, is known as a successful regularizer, but it is still not clear enough why such training techniques work well in practice and how we can maximize their benefit in the presence of two conflicting objectives---optimizing to true data distribution and preventing overfitting by regularization. This paper addresses the above issues by 1) interpreting that the conventional training methods with regularization by noise injection optimize the lower bound of the true objective and 2) proposing a technique to achieve a tighter lower bound using multiple noise samples per training example in a stochastic gradient descent iteration. We demonstrate the effectiveness of our idea in several computer vision applications.