No Arabic abstract
For an element $g$ of a group $G$, an Engel sink is a subset $mathcal{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathcal{E}(g)$. We conjecture that if $G$ is a profinite group in which every element admits a sink that is a procyclic subgroup, then $G$ is procyclic-by-(locally nilpotent). We prove the conjecture in two cases -- when $G$ is a finite group, or a soluble pro-$p$ group.
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an elementary abelian group of order $q^2$ acting coprimely on a finite group $G$. We show that if for each nontrivial element $a$ in $ A$ and every element $gin C_{G}(a)$ the cardinality of the smallest Engel sink $mathscr{E}(g)$ is at most $m$, then the order of $gamma_infty(G)$ is bounded in terms of $m$ only. Moreover we prove that if for each $ain Asetminus {1}$ and every element $gin C_{G}(a)$, the smallest Engel sink $mathscr{E}(g)$ generates a subgroup of rank at most $m$, then the rank of $gamma_infty(G)$ is bounded in terms of $m$ and $q$ only.
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group. It is shown that G has a normal open subgroup N which is either abelian or pro-p. Further, a rather detailed information about the finite quotient G/N is obtained.
The article deals with profinite groups in which centralizers are virtually procyclic. Suppose that G is a profinite group such that the centralizer of every nontrivial element is virtually torsion-free while the centralizer of every element of infinite order is virtually procyclic. We show that G is either virtually pro-p for some prime p or virtually torsion-free procyclic. The same conclusion holds for profinite groups in which the centralizer of every nontrivial element is virtually procyclic; moreover, if G is not pro-p, then G has finite rank.
We call $n$ a cyclic number if every group of order $n$ is cyclic. It is implicit in work of Dickson, and explicit in work of Szele, that $n$ is cyclic precisely when $gcd(n,phi(n))=1$. With $C(x)$ denoting the count of cyclic $nle x$, ErdH{o}s proved that $$C(x) sim e^{-gamma} x/logloglog{x}, quadtext{as $xtoinfty$}.$$ We show that $C(x)$ has an asymptotic series expansion, in the sense of Poincare, in descending powers of $logloglog{x}$, namely $$frac{e^{-gamma} x}{logloglog{x}} left(1-frac{gamma}{logloglog{x}} + frac{gamma^2 + frac{1}{12}pi^2}{(logloglog{x})^2} - frac{gamma^3 +frac{1}{4} gamma pi^2 + frac{2}{3}zeta(3)}{(logloglog{x})^3} + dots right). $$
Let $q$ be a prime, $n$ a positive integer and $A$ an elementary abelian group of order $q^r$ with $rgeq2$ acting on a finite $q$-group $G$. The following results are proved. We show that if all elements in $gamma_{r-1}(C_G(a))$ are $n$-Engel in $G$ for any $ain A^#$, then $gamma_{r-1}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-1$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $G$ for any $ain A^#$, then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Assuming $rgeq 3$ we prove that if all elements in $gamma_{r-2}(C_G(a))$ are $n$-Engel in $C_G(a)$ for any $ain A^#$, then $gamma_{r-2}(G)$ is $k$-Engel for some ${n,q,r}$-bounded number $k$, and if, for some integer $d$ such that $2^dleq r-2$, all elements in the $d$th derived group of $C_G(a)$ are $n$-Engel in $C_G(a)$ for any $ain A^#,$ then the $d$th derived group $G^{(d)}$ is $k$-Engel for some ${n,q,r}$-bounded number $k$. Analogue (non-quantitative) results for profinite groups are also obtained.