The topology of one-dimensional chiral systems is captured by the winding number of the Hamiltonian eigenstates. Here we show that this invariant can be read-out by measuring the mean chiral displacement of a single-particle wavefunction that is connected to a fully localized one via a unitary and translational-invariant map. Remarkably, this implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases. We confirm experimentally these results in a quantum walk of structured light.
The interplay between non-Hermiticity and topology opens an exciting avenue for engineering novel topological matter with unprecedented properties. While previous studies have mainly focused on one-dimensional systems or Chern insulators, here we investigate topological phase transitions to/from quantum spin Hall (QSH) insulators driven by non-Hermiticity. We show that a trivial to QSH insulator phase transition can be induced by solely varying non-Hermitian terms, and there exists exceptional edge arcs in QSH phases. We establish two topological invariants for characterizing the non-Hermitian phase transitions: i) with time-reversal symmetry, the biorthogonal $mathbb{Z}_2$ invariant based on non-Hermitian Wilson loops, and ii) without time-reversal symmetry, a biorthogonal spin Chern number through biorthogonal decompositions of the Bloch bundle of the occupied bands. These topological invariants can be applied to a wide class of non-Hermitian topological phases beyond Chern classes, and provides a powerful tool for exploring novel non-Hermitian topological matter and their device applications.
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
The Su-Schrieffer-Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting non-trivial edge states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is affected by a time-dependent potential. In particular, we evidence the competition among different photon-assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology at different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting Floquet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or replaced by new Floquet edge states. Our study is complemented by an analysis of Zak phase applied to the Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases, our results could find a promising test-ground in cold matter experiments.
We present a distinct mechanism for the formation of bound states in the continuum (BICs). In chiral quantum systems there appear zero-energy states in which the wave function has finite amplitude only in one of the subsystems defined by the chiral symmetry. When the system is coupled to leads with a continuum energy band, part of these states remain bound. We derive some algebraic rules for the number of these states depending on the dimensionality and rank of the total Hamiltonian. We examine the transport properties of such systems including the appearance of Fano resonances in some limiting cases. Finally, we discuss experimental setups based on microwave dielectric resonators and atoms in optical lattices where these predictions can be tested.
Topological nodal line semimetals host stable chained, linked, or knotted line degeneracies in momentum space protected by symmetries. In this paper, we use the Jones polynomial as a general topological invariant to capture the global knot topology of the nodal lines. We show that every possible change in Jones polynomial is attributed to the local evolutions around every point where two nodal lines touch. As an application of our theory, we show that nodal chain semimetals with four touching points can evolve to a Hopf-link. We extend our theory to 3D non-Hermitian multi-band exceptional line semimetals.