No Arabic abstract
We performed measurements of photon correlation [$g^{(2)}(tau)$] in driven nonlinear high-$Q$ silicon (Si) photonic crystal (PhC) microcavities. The measured $g^{(2)}(tau)$ exhibits a damped oscillatory behavior when input pump power exceeds a critical value. From comparison between experiments and simulations, we attribute the measured oscillation of $g^{(2)}(tau)$ to self-pulsing (a limit cycle) emerging from an interplay between photon, carrier, and thermal dynamics. Namely, the oscillation frequency of $g^{(2)}(tau)$ corresponds to the oscillation period of the limit cycle, while its finite coherence (damping) time originates from the stochastic nature of the limit cycle. From the standpoint of phase reduction theory, we interpret the measured coherence time of $g^{(2)}(tau)$ as the coherence (diffusion) time of a generalized phase of the limit cycle. Furthermore, we show that an increase in laser input power enhances the coherence time of $g^{(2)}(tau)$ up to the order of microseconds, which could be a demonstration of the stabilization of a stochastic limit cycle through pumping.
A driven high-Q Si microcavity is known to exhibit limit cycle oscillation originating from carrier-induced and thermo-optic nonlinearities. We propose a novel nanophotonic device to realize synchronized optical limit cycle oscillations with coupled silicon (Si) photonic crystal (PhC) microcavities. Here, coupled limit cycle oscillators are realized by using coherently coupled Si PhC microcavities. By simulating coupled-mode equations, we theoretically demonstrate mutual synchronization (entrainment) of two limit cycles induced by coherent coupling. Furthermore, we interpret the numerically simulated synchronization in the framework of phase description. Since our proposed design is perfectly compatible with current silicon photonics fabrication processes, the synchronization of optical limit cycle oscillations will be implemented in future silicon photonic circuits.
We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect.
Second-harmonic and sum-frequency mixing phenomena associated with 3D-localized photonic modes are studied in InP-based planar photonic crystal microcavities excited by short-pulse radiation near 1550 nm. Three-missing-hole microcavities that support two closely-spaced modes exhibit rich second-order scattering spectra that reflect intra- and inter-mode mixing via the bulk InP chi(2) during ring-down after excitation by the broadband, resonant pulse. Simultaneous excitation with a non-resonant source results in tunable second-order radiation from the microcavity.
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here we show that integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single photon emitters on silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe enhancement of emission from the dopant states by a factor of $sim$100, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, where $sim$30% decrease of emission lifetime is observed. Statistics of photons emitted from the cavity-coupled dopant states are investigated by photon correlation measurements, and high-purity single photon generation is observed. Excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept low even when the excitation power increases, while single photon emission rate can be increased up to $sim 1.7 times 10^7$ Hz.
We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi(2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible in an experimentally feasible geometry, with the operating output power at the point of optimal total conversion efficiency adjustable by varying the mode quality (Q) factors.