Do you want to publish a course? Click here

Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

151   0   0.0 ( 0 )
 Added by Norman Hauke
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect.



rate research

Read More

Monolayers of transition metal dichalcogenides (TMDCs) have emerged as new optoelectronic materials in the two dimensional (2D) limit, exhibiting rich spin-valley interplays, tunable excitonic effects, and strong light-matter interactions. An essential yet undeveloped ingredient for many photonic applications is the manipulation of its light emission. Here we demonstrate the control of excitonic light emission from monolayer tungsten diselenide (WSe2) in an integrated photonic structure, achieved by transferring one monolayer onto a photonic crystal (PhC) with a cavity. In addition to the observation of greatly enhanced (~60 times) photoluminescence of WSe2 and an effectively coupled cavity-mode emission, we are able to redistribute the emitted photons both polarly and azimuthally in the far field through designing PhC structures, as revealed by momentum-resolved microscopy. A 2D optical antenna is thus constructed. Our work suggests a new way of manipulating photons in hybrid 2D photonics, important for future energy efficient optoelectronics and 2D nano-lasers.
Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano-scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes -- directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.
One dimensional nanobeam photonic crystal cavities are fabricated in silicon dioxide with silicon nanocrystals. Quality factors of over 9 x 10^3 are found in experiment, matching theoretical predictions, with mode volumes of 1.5(lambda/n)^3 . Photoluminescence from the cavity modes is observed in the visible wavelength range 600-820 nm. Studies of the lossy characteristics of the cavities are conducted at varying temperatures and pump powers. Free carrier absorption effects are found to be significant at pump powers as low as a few hundred nanowatts.
We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated for cavity modes of L3 and Hexapole cavities with different cavity quality factors. For each of these cavities many nominally identical samples are probed to obtain reliable statistics. As the quality factor increases we observe a clear decrease in the average mode emission intensity recorded under comparable optical pumping conditions. This clear experimentally observed trend is compared with simulations based on a dissipative master equation approach that describes a cavity weakly coupled to an ensemble of emitters. We obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed trend. In combination with the observation of cavity linewidth broadening in power dependent measurements, we conclude that free carrier absorption is the limiting effect for the cavity mediated light enhancement under conditions of strong pumping.
Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fundamental building block for elaborate quantum information networks and a cavity quantum electrodynamic (cQED) system controlled by single photons. So far no fast tuning mechanism is available to achieve control within the system coherence time. Here we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave (SAW) with frequencies exceeding 1.7 gigahertz, one order of magnitude faster than alternative approaches. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Since PCMs confine photonic and phononic excitations, coupling optical to acoustic frequencies, our technique opens ways towards coherent acoustic control of optomechanical crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا