Do you want to publish a course? Click here

Modelling the strongest silicate emission features of local type 1 AGN

70   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the 10 and $18mu$m silicate features in a sample of 67 local ($z<0.1$) type 1 active galactic nuclei (AGN) with available {it Spitzer} spectra dominated by non-stellar processes. We find that the $10mu$m silicate feature peaks at $10.3^{+0.7}_{-0.9}mu$m with a strength (Si$_{p}$ = ln f$_{p}$(spectrum)/f$_{p}$(continuum)) of $0.11^{+0.15}_{-0.36}$, while the $18mu$m one peaks at $17.3^{+0.4}_{-0.7}mu$m with a strength of $0.14^{+0.06}_{-0.06}$. We select from this sample sources with the strongest 10$mu$m silicate strength ($sigma_{Si_{10mu m}}>0.28$, 10 objects). We carry out a detailed modeling of the IRS/{it Spitzer} spectra by comparing several models that assume different geometries and dust composition: a smooth torus model, two clumpy torus models, a two-phase medium torus model, and a disk+outflow clumpy model. We find that the silicate features are well modeled by the clumpy model of Nenkova et al. 2008, and among all models those including outflows and complex dust composition are the best (Hoenig et al. 2017). We note that even in AGN-dominated galaxies it is usually necessary to add stellar contributions to reproduce the emission at the shortest wavelengths.



rate research

Read More

We report the detection and successful modeling of the unusual 9.7mum Si--O stretching silicate emission feature in the type 1 (i.e. face-on) LINER nucleus of M81. Using the Infrared Spectrograph (IRS) instrument on Spitzer, we determine the feature in the central 230 pc of M81 to be in strong emission, with a peak at ~10.5mum. This feature is strikingly different in character from the absorption feature of the galactic interstellar medium, and from the silicate absorption or weak emission features typical of galaxies with active star formation. We successfully model the high signal-to-noise ratio IRS spectra with porous silicate dust using laboratory-acquired mineral spectra. We find that the most probable fit uses micron-sized, porous grains of amorphous silicate and graphite. In addition to silicate dust, there is weak PAH emission present (particularly at 11.3mum, arising from the C--H out-of-plane bending vibration of relatively large PAHs of ~500--1000 C atoms) whose character reflects the low-excitation AGN environment, with some evidence that small PAHs of ~100--200 C atoms (responsible for the 7.7mum C--C stretching band) in the immediate vicinity of the nucleus have been preferentially destroyed. (abstract continues)
581 - A. D. Goulding 2012
We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona-fide Compton-thick (N_H > 1.5 x 10^24 cm^-2) AGN with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at lambda~9.7um in archival low-resolution (R~57-127) Spitzer Infrared Spectrograph (IRS) spectroscopy, and show that only a minority (~45%) of nearby Compton-thick AGN have strong Si-absorption features (S_9.7 = ln(f_{int}/f_{obs}) > 0.5) which would indicate significant dust attenuation. The majority (~60%) are star-formation dominated (AGN:SB<0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission-lines are optically-extinguished. Those Compton-thick AGN hosted in low-inclination angle galaxies exhibit a narrow-range in Si-absorption (S_9.7 ~ 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies; dust-lanes; galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.
We have newly identified a substantial number of type 1 active galactic nuclei (AGN) featuring weak broad-line regions (BLRs) at z < 0.2 from detailed analysis of galaxy spectra in the Sloan Digital Sky Survey Data Release 7. These objects predominantly show a stellar continuum but also a broad H-alpha emission line, indicating the presence of a low-luminosity AGN oriented so that we are viewing the central engine directly without significant obscuration. These accreting black holes have previously eluded detection due to their weak nature. The new BLR AGNs we found increased the number of known type 1 AGNs by 49%. Some of these new BLR AGNs were detected at the Chandra X-ray Observatory, and their X-ray properties confirm that they are indeed type 1 AGN. Based on our new and more complete catalogue of type 1 AGNs, we derived the type 1 fraction of AGNs as a function of [OIII] 5007 emission luminosity and explored the possible dilution effect on the obscured AGN due to star-formation. The new type 1 AGN fraction shows much more complex behavior with respect to black hole mass and bolometric luminosity than suggested by the existing receding torus model. The type 1 AGN fraction is sensitive to both of these factors, and there seems to be a sweet spot (ridge) in the diagram of black hole mass and bolometric luminosity. Furthermore, we present a hint that the Eddington ratio plays a role in determining the opening angles.
We present a detailed study of ionized outflows in a large sample of ~650 hard X-ray detected AGN. Using optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS) we are able to reveal the faint wings of the [OIII] emission lines associated with outflows covering, for the first time, an unexplored range of low AGN bolometric luminosity at low redshift (z~0.05). We test if and how the incidence and velocity of ionized outflow is related to AGN physical parameters: black hole mass, gas column density, Eddington Ratio, [OIII], X-ray, and bolometric luminosities. We find a higher occurrence of ionized outflows in type 1.9 (55%) and type 1 AGN (46%) with respect to type 2 AGN (24%). While outflows in type 2 AGN are evenly balanced between blue and red velocity offsets with respect to the [OIII] narrow component, they are almost exclusively blueshifted in type 1 and type 1.9 AGN. We observe a significant dependence between the outflow occurrence and accretion rate, which becomes relevant at high Eddington ratios (> -1.7). We interpret such behaviour in the framework of covering factor-Eddington ratio dependence. We dont find strong trends of the outflow maximum velocity with AGN physical parameters, as an increase with bolometric luminosity can be only identified when including samples of AGN at high luminosity and high redshift taken from literature.
91 - F. Ricci 2017
Type 2 active galactic nuclei (AGN) represent the majority of the AGN population. However, due to the difficulties in measuring their black hole (BH) masses, it is still unknown whether they follow the same BH mass-host galaxy scaling relations valid for quiescent galaxies and type 1 AGN. Here we present the locus of type 2 AGN having virial BH mass estimates in the $M_{BH}-sigma_star$ plane. Our analysis shows that the BH masses of type 2 AGN are $sim0.9$ dex smaller than type 1 AGN at $sigma_starsim 185$ km s$^{-1}$, regardless of the (early/late) AGN host galaxy morphology. Equivalently, type 2 AGN host galaxies have stellar velocity dispersions $sim 0.2$ dex higher than type 1 AGN hosts at $M_{BH}sim10^7$ M$_odot$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا