No Arabic abstract
Type 2 active galactic nuclei (AGN) represent the majority of the AGN population. However, due to the difficulties in measuring their black hole (BH) masses, it is still unknown whether they follow the same BH mass-host galaxy scaling relations valid for quiescent galaxies and type 1 AGN. Here we present the locus of type 2 AGN having virial BH mass estimates in the $M_{BH}-sigma_star$ plane. Our analysis shows that the BH masses of type 2 AGN are $sim0.9$ dex smaller than type 1 AGN at $sigma_starsim 185$ km s$^{-1}$, regardless of the (early/late) AGN host galaxy morphology. Equivalently, type 2 AGN host galaxies have stellar velocity dispersions $sim 0.2$ dex higher than type 1 AGN hosts at $M_{BH}sim10^7$ M$_odot$.
We report the virial measurements of the BH mass of a sample of 17 type 2 AGN, drawn from the Swift/BAT 70-month 14-195 keV hard X-ray catalogue, where a faint BLR component has been measured via deep NIR (0.8-2.5 $mu$m) spectroscopy. We compared the type 2 AGN with a control sample of 33 type 1 AGN. We find that the type 2 AGN BH masses span the 5$<$ log(M$_{BH}$ /M$_{odot}$) $< $7.5 range, with an average log(M$_{BH}$/M$_{odot}$) = 6.7, which is $sim$ 0.8 dex smaller than found for type 1 AGN. If type 1 and type 2 AGN of the same X-ray luminosity log($L_{14-195}$/erg s$^{-1}$) $sim$ 43.5 are compared, type 2 AGN have 0.5 dex smaller BH masses than type 1 AGN. Although based on few tens of objects, this result disagrees with the standard AGN unification scenarios in which type 1 and type 2 AGN are the same objects observed along different viewing angles with respect to a toroidal absorbing material.
We present a re-calibration of the $M_{BH}-sigma_{star}$ relation, based on a sample of 16 reverberation-mapped galaxies with newly determined bulge stellar velocity dispersions ($sigma_{star}$) from integral-field spectroscopy (IFS), and a sample of 32 quiescent galaxies with publicly available IFS. For both samples, $sigma_{star}$ is determined via two different methods that are popular in the literature, and we provide fits for each sample based on both sets of $sigma_{star}$. We find the fit to the AGN sample is shallower than the fit to the quiescent galaxy sample, and that the slopes for each sample are in agreement with previous investigations. However, the intercepts to the quiescent galaxy relations are notably higher than those found in previous studies, due to the systematically lower $sigma_{star}$ measurements that we obtain from IFS. We find that this may be driven, in part, by poorly constrained measurements of bulge effective radius ($r_{e}$) for the quiescent galaxy sample, which may bias the $sigma_{star}$ measurements low. We use these quiescent galaxy parameterizations, as well as one from the literature, to recalculate the virial scaling factor $f$. We assess the potential biases in each measurement, and suggest $f=4.82pm1.67$ as the best currently available estimate. However, we caution that the details of how $sigma_{star}$ is measured can significantly affect $f$, and there is still much room for improvement.
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) was designed to conduct a blind search for AGN-driven outflows on X-ray selected AGN at redshift z$sim$2 with high ($sim$2 kpc) spatial resolution, and correlate them to the properties of the host galaxy and central black hole. The main aims of this paper are: a) to derive reliable estimates for the BH mass and accretion rates for the Type-1 AGN in this survey; b) to characterize the properties of the AGN driven winds in the BLR. We analyzed rest-frame optical and UV spectra of 21 Type-1 AGN. We found that the BH masses estimated from H$alpha$ and H$beta$ lines are in agreement. We estimate BH masses in the range Log(M$rm_{BH}/M_{odot}$)=8.4-10.8 and Eddington ratios $rmlambda_{Edd}$ =0.04-1.3. We confirm that the CIV line width does not correlate with the Balmer lines and the peak of the line profile is blue-shifted with respect to the [OIII]-based systemic redshift. These findings support the idea that the CIV line is tracing outflowing gas in the BLR, with velocities up to $sim$4700 km/s. We confirm the strong dependence of the BLR wind velocity with the UV-to-Xray continuum slope, L$rm_{Bol}$ and $rmlambda_{Edd}$. We inferred BLR mass outflow rates in the range 0.005-3 M$_{odot}$/yr, showing a correlation with the bolometric luminosity consistent with that observed for ionized winds in the NLR and X-ray winds detected in local AGN, and kinetic power $sim$10$^{[-7:-4]}times$ L$rm_{Bol}$. Finally, we found an anti-correlation between the equivalent width of the [OIII] line with respect to the CIV shift, and a positive correlation with [OIII] outflow velocity. These findings, for the first time in an unbiased sample of AGN at z$sim$2, support a scenario where BLR winds are connected to galaxy scale detected outflows, and are capable of affecting the gas in the NLR located at kpc scale.
We present a detailed study of ionized outflows in a large sample of ~650 hard X-ray detected AGN. Using optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS) we are able to reveal the faint wings of the [OIII] emission lines associated with outflows covering, for the first time, an unexplored range of low AGN bolometric luminosity at low redshift (z~0.05). We test if and how the incidence and velocity of ionized outflow is related to AGN physical parameters: black hole mass, gas column density, Eddington Ratio, [OIII], X-ray, and bolometric luminosities. We find a higher occurrence of ionized outflows in type 1.9 (55%) and type 1 AGN (46%) with respect to type 2 AGN (24%). While outflows in type 2 AGN are evenly balanced between blue and red velocity offsets with respect to the [OIII] narrow component, they are almost exclusively blueshifted in type 1 and type 1.9 AGN. We observe a significant dependence between the outflow occurrence and accretion rate, which becomes relevant at high Eddington ratios (> -1.7). We interpret such behaviour in the framework of covering factor-Eddington ratio dependence. We dont find strong trends of the outflow maximum velocity with AGN physical parameters, as an increase with bolometric luminosity can be only identified when including samples of AGN at high luminosity and high redshift taken from literature.
The absence of intrinsic broad line emission has been reported in a number of active galactic nuclei (AGN), including some with high Eddington ratios. Such true type 2 AGN are inherent to the disk-wind scenario for the broad line region: Broad line emission requires a minimal column density, implying a minimal outflow rate and thus a minimal accretion rate. Here we perform a detailed analysis of the consequences of mass conservation in the process of accretion through a central disk. The resulting constraints on luminosity are consistent with all the cases where claimed detections of true type 2 AGN pass stringent criteria, and predict that intrinsic broad line emission can disappear at luminosities as high as about 4x$10^{46}$ erg s$^{-1}$ and any Eddington ratio, though more detections can be expected at Eddington ratios below about 1%. Our results are applicable to every disk outflow model, whatever its details and whether clumpy or smooth, irrespective of the wind structure and its underlying dynamics. While other factors, such as changes in spectral energy distribution or covering factor, can affect the intensities of broad emission lines, within this scenario they can only produce true type 2 AGN of higher luminosity then those prescribed by mass conservation.