Do you want to publish a course? Click here

Echoes from the Abyss: A Status Update

79   0   0.0 ( 0 )
 Added by Jahed Abedi
 Publication date 2020
  fields Physics
and research's language is English
 Authors Jahed Abedi




Ask ChatGPT about the research

Gravitational wave echoes provide our most direct and surprising observational window into quantum nature of black holes. Three years ago, the first search for echoes from Planck-scale modifications of general relativity near black hole event horizons led to tentative evidence at false detection probability of 1% arXiv:1612.00266 . The study introduced a naive phenomenological model and used the public data release by the Advanced LIGO gravitational wave observatory for the first observing run O1 (GW150914, GW151226, and LVT151012, now GW151012). Here, we provide a status update on various observational searches for echoes by independent groups, and argue that they can all be consistent if echoes are most prominent at lower frequencies and/or in binary mergers of more extreme mass ratio. We also point out that the only reported detection of echoes (with $>4sigma$ confidence) at 1.0 second after the binary neutron star merger GW170817 arXiv:1803.10454 is coincident with the formation time of the black hole inferred from electromagnetic observations.



rate research

Read More

Recently, Abedi, Dykaar and Afshordi claimed evidence for a repeating damped echo signal following the binary black hole merger gravitational-wave events recorded in the first observational period of the Advanced LIGO interferometers. We discuss the methods of data analysis and significance estimation leading to this claim, and identify several important shortcomings. We conclude that their analysis does not provide significant observational evidence for the existence of Planck-scale structure at black hole horizons, and suggest renewed analysis correcting for these shortcomings.
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sphere and confirm its exponential decay. The trapped wavefront propagates through caustics resulting in echoes that propagate to infinity. The arrival times and the decay rate of these caustic echoes are consistent with propagation along null geodesics and the large l-limit of quasinormal modes. We show that the four-fold singularity structure of the retarded Green function is due to the well-known action of a Hilbert transform on the trapped wavefront at caustics. A two-fold cycle is obtained for degenerate source-observer configurations along the caustic line, where the energy amplification increases with an inverse power of the scale of the source. Finally, we discuss the tail piece of the solution due to propagation within the light cone, up to and including null infinity, and argue that, even with ideal instruments, only a finite number of echoes can be observed. Putting these pieces together, we provide a heuristic expression that approximates the Green function with a few free parameters. Accurate calculations and approximations of the Green function are the most general way of solving for wave propagation in curved spacetimes and should be useful in a variety of studies such as the computation of the self-force on a particle.
172 - Hang Liu , Peng Liu , Yunqi Liu 2020
We study the time evolution of the test scalar and electromagnetic fields perturbations in configurations of phantom wormholes surrounded by dark energy with state parameter $omega< -1$. We observe obvious signals of echoes reflecting wormholes properties and disclose the physical reasons behind such phenomena. In particular, we find that the dark energy equation of state has a clear imprint in echoes in wave perturbations. When $omega$ approaches the phantom divide $omega=-1$ from below, the delay time of echoes becomes longer. The echo of gravitational wave is likely to be detected in the near future, the signature of the dark energy equation of state in the echo spectrum can serve as a local measurement of the dark energy.
We consider a very simple model for gravitational wave echoes from black hole merger ringdowns which may arise from local Lorentz symmetry violations that modify graviton dispersion relations. If the corrections are sufficiently soft so they do not remove the horizon, the reflection of the infalling waves which trigger the echoes is very weak. As an example, we look at the dispersion relation of a test scalar field corrected by roton-like operators depending only on spatial momenta, in Gullstrand-Painleve coordinates. The near-horizon regions of a black hole do become reflective, but only very weakly. The resulting ``bounces of infalling waves can yield repetitive gravity wave emissions but their power is very small. This implies that to see any echoes from black holes we really need an egregious departure from either standard GR or effective field theory, or both. One possibility to realize such strong echoes is the recently proposed classical firewalls which replace black hole horizons with material shells surrounding timelike singularities.
We remind that the ring down features observed in the LIGO GWs resulted from trembling of photon spheres (Rp=3M) of newly formed compact objects and not from the trembling of their event horizons (R=2M). Further, the tentative evidences for late time echoes in GWs might be signatures of horizonless compact objects rather than vacuum black holes (BHs). Similarly, even for an ideal BH, the radius of its shadow is R_shad = sqrt{3}Rp is actually the gravitationally lensed shadow of its photon sphere. Accordingly any compact object having R geq R = 3M would generate similar shadow. Thus, no observation has ever detected any event horizon or any exact BH. Also note that the magnetic field embedded in the accreting plasma close to the compact object is expected to have a radial pattern of B sim 1/r while the stronger BHM dipole magnetic field should fall off as B sim 1/r3. Accordingly it has been suggested that one may try to infer the true nature of the so-called astrophysical BHs by studying the radial pattern of the magnetic field in their vicinity. But here we highlight that close to the surface of BHMs, the magnetic field pattern differs significantly from the same for non-relativistic dipoles. In particular, we point out that for ultra-compact BHMs, the polar field is weaker than the equatorial field by an extremely large factor of sim z_s/lnz_s, where z_s>>1 is the surface gravitational redshift. We suggest that by studying the of radial variation as well as significant angular asymmetry of magnetic field structure near the compact object, future observations might differentiate a theoretical black hole from a astrophysical BH mimicker. This study also shows that even if some BHMs would be hypothesized to possess magnetic fields even stronger than that of magnetars, in certain cases, they may effectively behave as atoll type neutron stars possessing extremely low magnetic fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا