No Arabic abstract
Training a Generative Adversarial Networks (GAN) for a new domain from scratch requires an enormous amount of training data and days of training time. To this end, we propose DAWSON, a Domain Adaptive FewShot Generation FrameworkFor GANs based on meta-learning. A major challenge of applying meta-learning GANs is to obtain gradients for the generator from evaluating it on development sets due to the likelihood-free nature of GANs. To address this challenge, we propose an alternative GAN training procedure that naturally combines the two-step training procedure of GANs and the two-step training procedure of meta-learning algorithms. DAWSON is a plug-and-play framework that supports a broad family of meta-learning algorithms and various GANs with architectural-variants. Based on DAWSON, We also propose MUSIC MATINEE, which is the first few-shot music generation model. Our experiments show that MUSIC MATINEE could quickly adapt to new domains with only tens of songs from the target domains. We also show that DAWSON can learn to generate new digits with only four samples in the MNIST dataset. We release source codes implementation of DAWSON in both PyTorch and Tensorflow, generated music samples on two genres and the lightning video.
We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
Machine Speech Chain, which integrates both end-to-end (E2E) automatic speech recognition (ASR) and text-to-speech (TTS) into one circle for joint training, has been proven to be effective in data augmentation by leveraging large amounts of unpaired data. In this paper, we explore the TTS->ASR pipeline in speech chain to do domain adaptation for both neural TTS and E2E ASR models, with only text data from target domain. We conduct experiments by adapting from audiobook domain (LibriSpeech) to presentation domain (TED-LIUM), there is a relative word error rate (WER) reduction of 10% for the E2E ASR model on the TED-LIUM test set, and a relative WER reduction of 51.5% in synthetic speech generated by neural TTS in the presentation domain. Further, we apply few-shot speaker adaptation for the E2E ASR by using a few utterances from target speakers in an unsupervised way, results in additional gains.
Existing few-shot learning (FSL) methods make the implicit assumption that the few target class samples are from the same domain as the source class samples. However, in practice this assumption is often invalid -- the target classes could come from a different domain. This poses an additional challenge of domain adaptation (DA) with few training samples. In this paper, the problem of domain-adaptive few-shot learning (DA-FSL) is tackled, which requires solving FSL and DA in a unified framework. To this end, we propose a novel domain-adversarial prototypical network (DAPN) model. It is designed to address a specific challenge in DA-FSL: the DA objective means that the source and target data distributions need to be aligned, typically through a shared domain-adaptive feature embedding space; but the FSL objective dictates that the target domain per class distribution must be different from that of any source domain class, meaning aligning the distributions across domains may harm the FSL performance. How to achieve global domain distribution alignment whilst maintaining source/target per-class discriminativeness thus becomes the key. Our solution is to explicitly enhance the source/target per-class separation before domain-adaptive feature embedding learning in the DAPN, in order to alleviate the negative effect of domain alignment on FSL. Extensive experiments show that our DAPN outperforms the state-of-the-art FSL and DA models, as well as their naive combinations. The code is available at https://github.com/dingmyu/DAPN.
Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from source to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.