No Arabic abstract
Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from source to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods.
Adapting pre-trained representations has become the go-to recipe for learning new downstream tasks with limited examples. While literature has demonstrated great successes via representation learning, in this work, we show that substantial performance improvement of downstream tasks can also be achieved by appropriate designs of the adaptation process. Specifically, we propose a modular adaptation method that selectively performs multiple state-of-the-art (SOTA) adaptation methods in sequence. As different downstream tasks may require different types of adaptation, our modular adaptation enables the dynamic configuration of the most suitable modules based on the downstream task. Moreover, as an extension to existing cross-domain 5-way k-shot benchmarks (e.g., miniImageNet -> CUB), we create a new high-way (~100) k-shot benchmark with data from 10 different datasets. This benchmark provides a diverse set of domains and allows the use of stronger representations learned from ImageNet. Experimental results show that by customizing adaptation process towards downstream tasks, our modular adaptation pipeline (MAP) improves 3.1% in 5-shot classification accuracy over baselines of finetuning and Prototypical Networks.
Few-shot image generation seeks to generate more data of a given domain, with only few available training examples. As it is unreasonable to expect to fully infer the distribution from just a few observations (e.g., emojis), we seek to leverage a large, related source domain as pretraining (e.g., human faces). Thus, we wish to preserve the diversity of the source domain, while adapting to the appearance of the target. We adapt a pretrained model, without introducing any additional parameters, to the few examples of the target domain. Crucially, we regularize the changes of the weights during this adaptation, in order to best preserve the information of the source dataset, while fitting the target. We demonstrate the effectiveness of our algorithm by generating high-quality results of different target domains, including those with extremely few examples (e.g., <10). We also analyze the performance of our method with respect to some important factors, such as the number of examples and the dissimilarity between the source and target domain.
Recent progress on few-shot learning largely relies on annotated data for meta-learning: base classes sampled from the same domain as the novel classes. However, in many applications, collecting data for meta-learning is infeasible or impossible. This leads to the cross-domain few-shot learning problem, where there is a large shift between base and novel class domains. While investigations of the cross-domain few-shot scenario exist, these works are limited to natural images that still contain a high degree of visual similarity. No work yet exists that examines few-shot learning across different imaging methods seen in real world scenarios, such as aerial and medical imaging. In this paper, we propose the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark, consisting of image data from a diverse assortment of image acquisition methods. This includes natural images, such as crop disease images, but additionally those that present with an increasing dissimilarity to natural images, such as satellite images, dermatology images, and radiology images. Extensive experiments on the proposed benchmark are performed to evaluate state-of-art meta-learning approaches, transfer learning approaches, and newer methods for cross-domain few-shot learning. The results demonstrate that state-of-art meta-learning methods are surprisingly outperformed by earlier meta-learning approaches, and all meta-learning methods underperform in relation to simple fine-tuning by 12.8% average accuracy. Performance gains previously observed with methods specialized for cross-domain few-shot learning vanish in this more challenging benchmark. Finally, accuracy of all methods tend to correlate with dataset similarity to natural images, verifying the value of the benchmark to better represent the diversity of data seen in practice and guiding future research.
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets. This setup faces challenges originating from the limited labeled data in each class and, additionally, from the domain shift between training and test sets. In this paper, we introduce a novel training approach for existing FSC models. It leverages on the explanation scores, obtained from existing explanation methods when applied to the predictions of FSC models, computed for intermediate feature maps of the models. Firstly, we tailor the layer-wise relevance propagation (LRP) method to explain the predictions of FSC models. Secondly, we develop a model-agnostic explanation-guided training strategy that dynamically finds and emphasizes the features which are important for the predictions. Our contribution does not target a novel explanation method but lies in a novel application of explanations for the training phase. We show that explanation-guided training effectively improves the model generalization. We observe improved accuracy for three different FSC models: RelationNet, cross attention network, and a graph neural network-based formulation, on five few-shot learning datasets: miniImagenet, CUB, Cars, Places, and Plantae. The source code is available at https://github.com/SunJiamei/few-shot-lrp-guided
We aim to build image generation models that generalize to new domains from few examples. To this end, we first investigate the generalization properties of classic image generators, and discover that autoencoders generalize extremely well to new domains, even when trained on highly constrained data. We leverage this insight to produce a robust, unsupervised few-shot image generation algorithm, and introduce a novel training procedure based on recovering an image from data augmentations. Our Augmentation-Interpolative AutoEncoders synthesize realistic images of novel objects from only a few reference images, and outperform both prior interpolative models and supervised few-shot image generators. Our procedure is simple and lightweight, generalizes broadly, and requires no category labels or other supervision during training.