Do you want to publish a course? Click here

Examples of singularity models for $mathbb{Z}/2$ harmonic 1-forms and spinors in dimension 3

89   0   0.0 ( 0 )
 Added by Clifford H. Taubes
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We use the symmetries of the tetrahedron, octahedron and icosahedron to construct local models for a $mathbb{Z}/2$ harmonic 1-form or spinor in 3-dimensions near a singular point in its zero loci. The local models are $mathbb{Z}/2$ harmonic 1-forms or spinors on $mathbb{R}^3$ that are homogeneous with respect to rescaling of $mathbb{R}^3$ with their zero locus consisting of four or more rays from the origin. The rays point from the origin to the vertices of a centered tetrahedron in one example; and they point from those of a centered octahedron and a centered icosahedron in two others.



rate research

Read More

For a homotopically energy-minimizing map $u: N^3to S^1$ on a compact, oriented $3$-manifold $N$ with boundary, we establish an identity relating the average Euler characteristic of the level sets $u^{-1}{theta}$ to the scalar curvature of $N$ and the mean curvature of the boundary $partial N$. As an application, we obtain some natural geometric estimates for the Thurston norm on $3$-manifolds with boundary, generalizing results of Kronheimer-Mrowka and the second named author from the closed setting. By combining these techniques with results from minimal surface theory, we obtain moreover a characterization of the Thurston norm via scalar curvature and the harmonic norm for general closed, oriented three-manifolds, extending Kronheimer and Mrowkas characterization for irreducible manifolds to arbitrary topologies.
We show that any closed spin manifold not diffeomorphic to the two-sphere admits a sequence of volume-one-Riemannian metrics for which the smallest non-zero Dirac eigenvalue tends to zero. As an application, we compare the Dirac spectrum with the conformal volume.
Given a hypersurface $M$ of null scalar curvature in the unit sphere $mathbb{S}^n$, $nge 4$, such that its second fundamental form has rank greater than 2, we construct a singular scalar-flat hypersurface in $Rr^{n+1}$ as a normal graph over a truncated cone generated by $M$. Furthermore, this graph is 1-stable if the cone is strictly 1-stable.
73 - Daniel Stern 2019
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M$ of $M$ to the average Euler characteristic of the level sets $Sigma_{theta}=u^{-1}{theta}$. As our primary application, we extend the Kronheimer--Mrowka characterization of the Thurston norm on $H_2(M;mathbb{Z})$ in terms of $|R_M^-|_{L^2}$ and the harmonic norm to any closed $3$--manifold containing no nonseparating spheres. Additional corollaries include the Bray--Brendle--Neves rigidity theorem for the systolic inequality $(min R_M)sys_2(M)leq 8pi$, and the well--known result of Schoen and Yau that $T^3$ admits no metric of positive scalar curvature.
103 - Vincent Colin 2020
We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, then every nondegenerate Reeb vector field on M has positive topological entropy. Moreover, we obtain that on a closed 3-manifold, every nondegenerate Reeb vector field has either two or infinitely many periodic orbits, and two periodic orbits are possible only on the sphere or on a lens space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا