We discuss quantum Hall effect in the presence of arbitrary pair interactions between electrons. It is shown that irrespective of the interaction strength the Hall conductivity is given by the filling fraction of Landau levels averaged over the ground state of the system. This conclusion remains valid for both integer and fractional quantum Hall effect.
We report quantitative measurements of the impact of alloy disorder on the $ u=5/2$ fractional quantum Hall state. Alloy disorder is controlled by the aluminum content $x$ in the Al$_x$Ga$_{1-x}$As channel of a quantum well. We find that the $ u=5/2$ state is suppressed with alloy scattering. To our surprise, in samples with alloy disorder the $ u=5/2$ state appears at significantly reduced mobilities when compared to samples in which alloy disorder is not the dominant scattering mechanism. Our results highlight the distinct roles of the different types of disorder present in these samples, such as the short-range alloy and the long-range Coulomb disorder.
We study proximity coupling between a superconductor and counter-propagating gapless modes arising on the edges of Abelian fractional quantum Hall liquids with filling fraction $ u=1/m$ (with $m$ an odd integer). This setup can be utilized to create non-Abelian parafermion zero-modes if the coupling to the superconductor opens an energy gap in the counter-propagating modes. However, when the coupling to the superconductor is weak an energy gap is opened only in the presence of sufficiently strong attractive interactions between the edge modes, which do not commonly occur in solid state experimental realizations. We therefore investigate the possibility of obtaining a gapped phase by increasing the strength of the proximity coupling to the superconductor. To this end, we use an effective wire construction model for the quantum Hall liquid and employ renormalization group methods to obtain the phase diagram of the system. Surprisingly, at strong proximity coupling we find a gapped phase which is stabilized for sufficiently strong repulsive interactions in the bulk of the quantum Hall fluids. We furthermore identify a duality transformation that maps between the weak coupling and strong coupling regimes, and use it to show that the gapped phases in both regimes are continuously connected through an intermediate proximity coupling regime.
We study the effects of a periodically driven electric field applied to a variety of tight-binding models in one dimension. We first consider a non-interacting system with or without a staggered on-site potential, and we find that that periodic driving can generate states localized completely or partially near the ends of a finite-sized system. Depending on the system parameters, such states have Floquet eigenvalues lying either outside or inside the continuum of eigenvalues of the bulk states; only in the former case we find that these states are completely localized at the ends and are true edge states. We then consider a system of two bosonic particles which have an on-site Hubbard interaction and show that a periodically driven electric field can generate two-particle states which are localized at the ends of the system. We show that many of these effects can be understood using a Floquet perturbation theory which is valid in the limit of large staggered potential or large interaction strength. Some of these effects can also be understood qualitatively by considering time-independent Hamiltonians which have a potential at the sites at the edges; Hamiltonians of these kind effectively appear in a Floquet-Magnus analysis of the driven problem. Finally, we discuss how the edge states produced by periodic driving of a non-interacting system of fermions can be detected by measuring the differential conductance of the system.
In quantum Hall systems with two narrow constrictions, tunneling between opposite edges can give rise to quantum interference and Aharonov-Bohm-like oscillations of the conductance. When there is an integer quantized Hall state within the constrictions, a region between them, with higher electron density, may form a compressible island. Electron-tunneling through this island can lead to residual transport, modulated by Coulomb-blockade type effects. We find that the coupling between the fully occupied lower Landau levels and the higher-partially occupied level gives rise to flux subperiods smaller than one flux quantum. We generalize this scenario to other geometries and to fractional quantum Hall systems, and compare our predictions to experiments.
We demonstrate the emergence of the quantum Hall (QH) hierarchy in a 2D model of coupled quantum wires in a perpendicular magnetic field. At commensurate values of the magnetic field, the system can develop instabilities to appropriate inter-wire electron hopping processes that drive the system into a variety of QH states. Some of the QH states are not included in the Haldane-Halperin hierarchy. In addition, we find operators allowed at any field that lead to novel crystals of Laughlin quasiparticles. We demonstrate that any QH state is the groundstate of a Hamiltonian that we explicitly construct.