We report quantitative measurements of the impact of alloy disorder on the $ u=5/2$ fractional quantum Hall state. Alloy disorder is controlled by the aluminum content $x$ in the Al$_x$Ga$_{1-x}$As channel of a quantum well. We find that the $ u=5/2$ state is suppressed with alloy scattering. To our surprise, in samples with alloy disorder the $ u=5/2$ state appears at significantly reduced mobilities when compared to samples in which alloy disorder is not the dominant scattering mechanism. Our results highlight the distinct roles of the different types of disorder present in these samples, such as the short-range alloy and the long-range Coulomb disorder.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization and Density Matrix Renormalization Group (DMRG) on the sphere. We find that for the Coulomb interaction the exact finite-system ground state is fully polarized, for shifts corresponding to both the Moore-Read Pfaffian state and its particle-hole conjugate (anti-Pfaffian). This result is found to be robust against small variations of the interaction. The low-energy excitation spectrum is consistent with spin-wave excitations of a fully-magnetized ferromagnet.
We compare the energy gap of the u=5/2 fractional quantum Hall effect state obtained in conventional high mobility modulation doped quantum well samples with those obtained in high quality GaAs transistors (heterojunction insulated gate field-effect transistors). We are able to identify the different roles that long range and short range disorders play in the 5/2 state and observe that the long range potential fluctuations are more detrimental to the strength of the 5/2 state than short-range potential disorder.
The fractional quantum Hall (FQH) effect at filling factor v = 5/2 has recently come under close scrutiny, as it may possess quasi-particle excitations obeying nonabelian statistics, a property sought for topologically protected quantum operations. Yet, its microscopic origin remains unidentified, and candidate model wave functions include those with undesirable abelian statistics. Here we report direct measurements of the electron spin polarization of the v = 5/2 FQH state using resistively detected nuclear magnetic resonance (NMR). We find the system to be fully polarized, which unambiguously rules out the most-likely abelian contender and thus lends strong support for the v = 5/2 state being nonabelian. Our measurements reveal an intrinsically different nature of interaction in the first-excited Landau level underlying the physics at v = 5/2.
Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied the Landau level filling factor $ u = 5/2$ fractional quantum Hall effect in a perpendicular magnetic field $B sim$ 1.7 T and determined its dependence on tilted magnetic fields. Contrary to all previous results, the 5/2 resistance minimum and the Hall plateau are found to strengthen continuously under an increasing tilt angle $0 < theta < 25^circ$ (corresponding to an in-plane magnetic field 0 $<$ $B_parallel$ $< 0.8$ T). In the same range of $theta$ the activation gaps of both the 7/3 and the 8/3 states are found to increase with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt angle $theta > 60^circ$, and the composite fermion series [2+$p/(2ppm1)$], $p =$ 1, 2 can be identified. Based on our results, we discuss the relevance of a Skyrmion spin texture at $ u = 5/2$ associated with small Zeeman energy in wide quantum wells, as proposed by W$acute{text o}$js $et$ $al$., Phys. Rev. Lett. 104, 086801 (2010).
We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply this technique to several samples of vastly different densities and grown in different MBE chambers. Excellent agreement is found between the estimated intrinsic and numerically obtained energy gaps for the $ u=5/2$ fractional quantum Hall state. Futhermore, we quantify, for the first time, the dependence of the intrinsic gap at $ u=5/2$ on Landau level mixing.