Do you want to publish a course? Click here

Visual Agreement Regularized Training for Multi-Modal Machine Translation

131   0   0.0 ( 0 )
 Added by Pengcheng Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multi-modal machine translation aims at translating the source sentence into a different language in the presence of the paired image. Previous work suggests that additional visual information only provides dispensable help to translation, which is needed in several very special cases such as translating ambiguous words. To make better use of visual information, this work presents visual agreement regularized training. The proposed approach jointly trains the source-to-target and target-to-source translation models and encourages them to share the same focus on the visual information when generating semantically equivalent visual words (e.g. ball in English and ballon in French). Besides, a simple yet effective multi-head co-attention model is also introduced to capture interactions between visual and textual features. The results show that our approaches can outperform competitive baselines by a large margin on the Multi30k dataset. Further analysis demonstrates that the proposed regularized training can effectively improve the agreement of attention on the image, leading to better use of visual information.



rate research

Read More

Multi-modal machine translation (MMT) improves translation quality by introducing visual information. However, the existing MMT model ignores the problem that the image will bring information irrelevant to the text, causing much noise to the model and affecting the translation quality. In this paper, we propose a novel Gumbel-Attention for multi-modal machine translation, which selects the text-related parts of the image features. Specifically, different from the previous attention-based method, we first use a differentiable method to select the image information and automatically remove the useless parts of the image features. Through the score matrix of Gumbel-Attention and image features, the image-aware text representation is generated. And then, we independently encode the text representation and the image-aware text representation with the multi-modal encoder. Finally, the final output of the encoder is obtained through multi-modal gated fusion. Experiments and case analysis proves that our method retains the image features related to the text, and the remaining parts help the MMT model generates better translations.
The attentional mechanism has proven to be effective in improving end-to-end neural machine translation. However, due to the intricate structural divergence between natural languages, unidirectional attention-based models might only capture partial aspects of attentional regularities. We propose agreement-based joint training for bidirectional attention-based end-to-end neural machine translation. Instead of training source-to-target and target-to-source translation models independently,our approach encourages the two complementary models to agree on word alignment matrices on the same training data. Experiments on Chinese-English and English-French translation tasks show that agreement-based joint training significantly improves both alignment and translation quality over independent training.
Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when the images are not available at the testing time.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and Kadar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا