Do you want to publish a course? Click here

IMAGINE: A comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays

85   0   0.0 ( 0 )
 Added by T Jaffe
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this white paper we introduce the IMAGINE Consortium and its scientific background, goals and structure. Our purpose is to coordinate and facilitate the efforts of a diverse group of researchers in the broad areas of the interstellar medium, Galactic magnetic fields and cosmic rays, and our goal is to develop more comprehensive insights into the structures and roles of interstellar magnetic fields and their interactions with cosmic rays. To achieve a higher level of self-consistency, depth and rigour can only be achieved by the coordinated efforts of experts in diverse areas of astrophysics involved in observational, theoretical and numerical work. We present our view of the present status of this topic, identify its key unsolved problems and suggest a strategy that will underpin our work. The backbone of the consortium is the Interstellar MAGnetic field INference Engine, a publicly available Bayesian platform that employs robust statistical methods to explore the multi-dimensional likelihood space using any number of modular inputs. It provides an interpretation and modelling framework that has the power and flexibility to include a variety of observational, theoretical and numerical lines of evidence into a self-consistent and comprehensive picture of the thermal and non-thermal interstellar media. An important innovation is that a consistent understanding of the phenomena that are directly or indirectly influenced by the Galactic magnetic field, such as the deflection of ultra-high energy cosmic rays or extragalactic backgrounds, is made an integral part of the modelling. The IMAGINE Consortium, which is informal by nature and open to new participants, hereby presents a methodological framework for the modelling and understanding of Galactic magnetic fields that is available to all communities whose research relies on a state-of-the-art solution to this problem. (Abridged.)



rate research

Read More

Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium ($simeq 100,{rm pc}$ in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.
Interpretations of synchrotron observations often assume a tight correlation between magnetic and cosmic ray energy densities. We examine this assumption using both test-particle simulations of cosmic rays and MHD simulations which include cosmic rays as a diffusive fluid. We find no spatial correlation between the cosmic rays and magnetic field energy densities at turbulent scales. Moreover, the cosmic ray number density and magnetic field energy density are statistically independent. Nevertheless, the cosmic ray spatial distribution is highly inhomogeneous, especially at low energies because the particles are trapped between random magnetic mirrors. These results can significantly change the interpretation of synchrotron observations and thus our understanding of the strength and structure of magnetic fields in the Milky Way and nearby spiral galaxies.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
The IMAGINE Consortium aims to bring modeling of the magnetic field of the Milky Way to a next level, by using Bayesian inference. IMAGINE includes an open-source modular software pipeline that optimizes parameters in a user-defined Galactic magnetic field model against various selected observational datasets. Bayesian priors can be added as external probabilistic constraints of the model parameters. These conference proceedings describe the science goals of the IMAGINE Consortium, the software pipeline and its inputs, viz observational data sets, Galactic magnetic field models, and Bayesian priors.
85 - Mark A. Walker 2015
In light of evidence for a high ionization rate due to Low-Energy Cosmic Rays (LECR), in diffuse molecular gas in the solar neighbourhood, we evaluate their heat input to the Warm Ionized Medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be higher than measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important, perhaps dominant role in the thermal balance of the WIM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا