Do you want to publish a course? Click here

Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks

261   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Unsupervised anomaly discovery in stream data is a research topic with many practical applications. However, in many cases, it is not easy to collect enough training data with labeled anomalies for supervised learning of an anomaly detector in order to deploy it later for identification of real anomalies in streaming data. It is thus important to design anomalies detectors that can correctly detect anomalies without access to labeled training data. Our idea is to adapt the Online evolving Spiking Neural Network (OeSNN) classifier to the anomaly detection task. As a result, we offer an Online evolving Spiking Neural Network for Unsupervised Anomaly Detection algorithm (OeSNN-UAD), which, unlike OeSNN, works in an unsupervised way and does not separate output neurons into disjoint decision classes. OeSNN-UAD uses our proposed new two-step anomaly detection method. Also, we derive new theoretical properties of neuronal model and input layer encoding of OeSNN, which enable more effective and efficient detection of anomalies in our OeSNN-UAD approach. The proposed OeSNN-UAD detector was experimentally compared with state-of-the-art unsupervised and semi-supervised detectors of anomalies in stream data from the Numenta Anomaly Benchmark and Yahoo Anomaly Datasets repositories. Our approach outperforms the other solutions provided in the literature in the case of data streams from the Numenta Anomaly Benchmark repository. Also, in the case of real data files of the Yahoo Anomaly Benchmark repository, OeSNN-UAD outperforms other selected algorithms, whereas in the case of Yahoo Anomaly Benchmark synthetic data files, it provides competitive results to the results recently reported in the literature.

rate research

Read More

Vibration patterns yield valuable information about the health state of a running machine, which is commonly exploited in predictive maintenance tasks for large industrial systems. However, the overhead, in terms of size, complexity and power budget, required by classical methods to exploit this information is often prohibitive for smaller-scale applications such as autonomous cars, drones or robotics. Here we propose a neuromorphic approach to perform vibration analysis using spiking neural networks that can be applied to a wide range of scenarios. We present a spike-based end-to-end pipeline able to detect system anomalies from vibration data, using building blocks that are compatible with analog-digital neuromorphic circuits. This pipeline operates in an online unsupervised fashion, and relies on a cochlea model, on feedback adaptation and on a balanced spiking neural network. We show that the proposed method achieves state-of-the-art performance or better against two publicly available data sets. Further, we demonstrate a working proof-of-concept implemented on an asynchronous neuromorphic processor device. This work represents a significant step towards the design and implementation of autonomous low-power edge-computing devices for online vibration monitoring.
Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they often turn into evolving environments where a change may affect the input data distribution. Such a change causes that predictive models trained over these stream data become obsolete and do not adapt suitably to new distributions. Specially in these non-stationary scenarios, there is a pressing need for new algorithms that adapt to these changes as fast as possible, while maintaining good performance scores. Unfortunately, most off-the-shelf classification models need to be retrained if they are used in changing environments, and fail to scale properly. Spiking Neural Networks have revealed themselves as one of the most successful approaches to model the behavior and learning potential of the brain, and exploit them to undertake practical online learning tasks. Besides, some specific flavors of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs. This work intends to merge both fields by serving as a comprehensive overview, motivating further developments that embrace Spiking Neural Networks for online learning scenarios, and being a friendly entry point for non-experts.
Stream data processing has gained progressive momentum with the arriving of new stream applications and big data scenarios. One of the most promising techniques in stream learning is the Spiking Neural Network, and some of them use an interesting population encoding scheme to transform the incoming stimuli into spikes. This study sheds lights on the key issue of this encoding scheme, the Gaussian receptive fields, and focuses on applying them as a pre-processing technique to any dataset in order to gain representativeness, and to boost the predictive performance of the stream learning methods. Experiments with synthetic and real data sets are presented, and lead to confirm that our approach can be applied successfully as a general pre-processing technique in many real cases.
Spiking Neural Network (SNN), as a brain-inspired approach, is attracting attention due to its potential to produce ultra-high-energy-efficient hardware. Competitive learning based on Spike-Timing-Dependent Plasticity (STDP) is a popular method to train an unsupervised SNN. However, previous unsupervised SNNs trained through this method are limited to a shallow network with only one learnable layer and cannot achieve satisfactory results when compared with multi-layer SNNs. In this paper, we eased this limitation by: 1)We proposed a Spiking Inception (Sp-Inception) module, inspired by the Inception module in the Artificial Neural Network (ANN) literature. This module is trained through STDP-based competitive learning and outperforms the baseline modules on learning capability, learning efficiency, and robustness. 2)We proposed a Pooling-Reshape-Activate (PRA) layer to make the Sp-Inception module stackable. 3)We stacked multiple Sp-Inception modules to construct multi-layer SNNs. Our algorithm outperforms the baseline algorithms on the hand-written digit classification task, and reaches state-of-the-art results on the MNIST dataset among the existing unsupervised SNNs.
343 - Hanle Zheng , Yujie Wu , Lei Deng 2020
Spiking neural networks (SNNs) are promising in a bio-plausible coding for spatio-temporal information and event-driven signal processing, which is very suited for energy-efficient implementation in neuromorphic hardware. However, the unique working mode of SNNs makes them more difficult to train than traditional networks. Currently, there are two main routes to explore the training of deep SNNs with high performance. The first is to convert a pre-trained ANN model to its SNN version, which usually requires a long coding window for convergence and cannot exploit the spatio-temporal features during training for solving temporal tasks. The other is to directly train SNNs in the spatio-temporal domain. But due to the binary spike activity of the firing function and the problem of gradient vanishing or explosion, current methods are restricted to shallow architectures and thereby difficult in harnessing large-scale datasets (e.g. ImageNet). To this end, we propose a threshold-dependent batch normalization (tdBN) method based on the emerging spatio-temporal backpropagation, termed STBP-tdBN, enabling direct training of a very deep SNN and the efficient implementation of its inference on neuromorphic hardware. With the proposed method and elaborated shortcut connection, we significantly extend directly-trained SNNs from a shallow structure ( < 10 layer) to a very deep structure (50 layers). Furthermore, we theoretically analyze the effectiveness of our method based on Block Dynamical Isometry theory. Finally, we report superior accuracy results including 93.15 % on CIFAR-10, 67.8 % on DVS-CIFAR10, and 67.05% on ImageNet with very few timesteps. To our best knowledge, its the first time to explore the directly-trained deep SNNs with high performance on ImageNet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا