Do you want to publish a course? Click here

Hydrodynamic Equations for Flocking Models without Velocity Alignment

180   0   0.0 ( 0 )
 Added by Fernando Peruani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previously reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.



rate research

Read More

We study a minimal cognitive flocking model, which assumes that the moving entities navigate using exclusively the available instantaneous visual information. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force that acts inside a vision cone (VC) and lack velocity-velocity alignment. We show that this active system can exhibit -- due to the VC that breaks Newtons third law -- various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or milling-like patterns, the formation of moving -- locally polar -- files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and non-linear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and non-living active systems.
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which however includes all existing types. We further argue that in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.
Self-propelled particle (SPP) systems are intrinsically out of equilibrium systems, where each individual particle converts energy into work to move in a dissipative medium. When interacting through a velocity alignment mechanism, and the medium acts as a momentum sink, even momentum is not conserved. In this scenario, a mapping into an equilibrium system seems unlikely. Here, we show that an entropy functional can be derived for SPPs with velocity alignment and density-dependent speed, at least in the (orientationally) disordered phase. This non-trivial result has important physical consequences. The study of the entropy functional reveals that the system can undergo phase separation before the orientational-order phase transition known to occur in SPP systems with velocity alignment.Moreover, we indicate that the spinodal line is a function of the alignment sensitivity and show that density fluctuations as well as the critical spatial diffusion, that leads to phase separation, dramatically increase as the orientational-order transition is approached.
The effect of quenched (frozen) orientational disorder on the collective motion of active particles is analyzed. We find that, as with annealed disorder (Langevin noise), active polar systems are far more robust against quenched disorder than their equilibrium counterparts. In particular, long ranged order (i.e., the existence of a non-zero average velocity $langle {bf v} rangle$) persists in the presence of quenched disorder even in spatial dimensions $d=3$, while it is destroyed even by arbitrarily weak disorder in $d le 4$ in equilibrium systems. Furthermore, in $d=2$, quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power law with distance) occurs when quenched disorder is present, in contrast to the short-ranged order that is all that can survive in equilibrium. These predictions are borne out by simulations in both two and three dimensions.
Cellular appendages conferring motility, such as flagella or cilia, are known to synchronise their periodic beats. The origin of synchronisation is a combination of long-range hydrodynamic interactions with physical mechanisms allowing the phases of these biological oscillators to evolve. Two of such mechanisms have been identified by previous work, the elastic compliance of the periodic orbit or oscillations driven by phase-dependent biological forcing. To help uncover the physical mechanism for hydrodynamic synchronisation most essential overall in biology, we theoretically investigate the effect of strong confinement on the effectiveness of hydrodynamic synchronisation. We use minimal models where appendages are modelled as rigid spheres forced to move along circular trajectories near a rigid surface. Strong confinement is modelled by adding a second nearby surface, parallel to the first one, where the distance between the surfaces is much smaller than the typical distance between the cilia. We calculate separately the impact of confinement on the synchronisation dynamics of the elastic compliance and the force modulation mechanisms and compare our results to the case with no confinement. Applying our results to the biologically-relevant situation of nodal cilia, we show that force modulation is a mechanism that leads to phase-locked states under strong confinement that are very similar to those without confinement as a difference with the elastic compliance mechanism. Our results point therefore to the robustness of force modulation for synchronisation, an important feature for biological dynamics that suggests it could be the most essential physical mechanism overall in arrays of nodal cilia. We further examine the distinct situation of primary cilia and show in that case that the difference in robustness of the mechanisms is not as pronounced but still favours the force modulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا