No Arabic abstract
Cellular appendages conferring motility, such as flagella or cilia, are known to synchronise their periodic beats. The origin of synchronisation is a combination of long-range hydrodynamic interactions with physical mechanisms allowing the phases of these biological oscillators to evolve. Two of such mechanisms have been identified by previous work, the elastic compliance of the periodic orbit or oscillations driven by phase-dependent biological forcing. To help uncover the physical mechanism for hydrodynamic synchronisation most essential overall in biology, we theoretically investigate the effect of strong confinement on the effectiveness of hydrodynamic synchronisation. We use minimal models where appendages are modelled as rigid spheres forced to move along circular trajectories near a rigid surface. Strong confinement is modelled by adding a second nearby surface, parallel to the first one, where the distance between the surfaces is much smaller than the typical distance between the cilia. We calculate separately the impact of confinement on the synchronisation dynamics of the elastic compliance and the force modulation mechanisms and compare our results to the case with no confinement. Applying our results to the biologically-relevant situation of nodal cilia, we show that force modulation is a mechanism that leads to phase-locked states under strong confinement that are very similar to those without confinement as a difference with the elastic compliance mechanism. Our results point therefore to the robustness of force modulation for synchronisation, an important feature for biological dynamics that suggests it could be the most essential physical mechanism overall in arrays of nodal cilia. We further examine the distinct situation of primary cilia and show in that case that the difference in robustness of the mechanisms is not as pronounced but still favours the force modulation.
Liquid-liquid phase separation occurs not only in bulk liquid, but also on surfaces. In physiology, the nature and function of condensates on cellular structures remain unexplored. Here, we study how the condensed protein TPX2 behaves on microtubules to initiate branching microtubule nucleation, which is critical for spindle assembly in eukaryotic cells. Using fluorescence, electron, and atomic force microscopies and hydrodynamic theory, we show that TPX2 on a microtubule reorganizes according to the Rayleigh-Plateau instability, like dew droplets patterning a spider web. After uniformly coating microtubules, TPX2 forms regularly spaced droplets from which branches nucleate. Droplet spacing increases with greater TPX2 concentration. A stochastic model shows that droplets make branching nucleation more efficient by confining the space along the microtubule where multiple necessary factors colocalize to nucleate a branch.
In the emerging field of 3D bioprinting, cell damage due to large deformations is considered a main cause for cell death and loss of functionality inside the printed construct. Those deformations, in turn, strongly depend on the mechano-elastic response of the cell to the hydrodynamic stresses experienced during printing. In this work, we present a numerical model to simulate the deformation of biological cells in arbitrary three-dimensional flows. We consider cells as an elastic continuum according to the hyperelastic Mooney-Rivlin model. We then employ force calculations on a tetrahedralized volume mesh. To calibrate our model, we perform a series of FluidFM(R) compression experiments with REF52 cells demonstrating that all three parameters of the Mooney-Rivlin model are required for a good description of the experimental data at very large deformations up to 80%. In addition, we validate the model by comparing to previous AFM experiments on bovine endothelial cells and artificial hydrogel particles. To investigate cell deformation in flow, we incorporate our model into Lattice Boltzmann simulations via an Immersed-Boundary algorithm. In linear shear flows, our model shows excellent agreement with analytical calculations and previous simulation data.
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report here the discovery that ptx1, a flagellar dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. Long-duration high-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wildtype. Possible mechanisms underlying these observations are discussed.
Interfaces between stratified epithelia and their supporting stromas commonly exhibit irregular shapes. Undulations are particularly pronounced in dysplastic tissues and typically evolve into long, finger-like protrusions in carcinomas. In a previous work (Basan et al., Phys. Rev. Lett. 106, 158101 (2011)), we demonstrated that an instability arising from viscous shear stresses caused by the constant flow due to cell turnover in the epithelium could drive this phenomenon. While interfacial tension between the two tissues as well as mechanical resistance of the stroma tend to maintain a flat interface, an instability occurs for sufficiently large viscosity, cell-division rate and thickness of the dividing region in the epithelium. Here, extensions of this work are presented, where cell division in the epithelium is coupled to the local concentration of nutrients or growth factors diffusing from the stroma. This enhances the instability by a mechanism similar to that of the Mullins-Sekerka instability in single-diffusion processes of crystal growth. We furthermore present the instability for the generalized case of a viscoelastic stroma.
Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute ~0.3% density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a puller stresslet, and can be described by a simple three-Stokeslet model.