Do you want to publish a course? Click here

A Deep Neural Networks Loss Surface Contains Every Low-dimensional Pattern

151   0   0.0 ( 0 )
 Added by Wojciech Czarnecki
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The work Loss Landscape Sightseeing with Multi-Point Optimization (Skorokhodov and Burtsev, 2019) demonstrated that one can empirically find arbitrary 2D binary patterns inside loss surfaces of popular neural networks. In this paper we prove that: (i) this is a general property of deep universal approximators; and (ii) this property holds for arbitrary smooth patterns, for other dimensionalities, for every dataset, and any neural network that is sufficiently deep and wide. Our analysis predicts not only the existence of all such low-dimensional patterns, but also two other properties that were observed empirically: (i) that it is easy to find these patterns; and (ii) that they transfer to other data-sets (e.g. a test-set).



rate research

Read More

Understanding the structure of loss landscape of deep neural networks (DNNs)is obviously important. In this work, we prove an embedding principle that the loss landscape of a DNN contains all the critical points of all the narrower DNNs. More precisely, we propose a critical embedding such that any critical point, e.g., local or global minima, of a narrower DNN can be embedded to a critical point/hyperplane of the target DNN with higher degeneracy and preserving the DNN output function. The embedding structure of critical points is independent of loss function and training data, showing a stark difference from other nonconvex problems such as protein-folding. Empirically, we find that a wide DNN is often attracted by highly-degenerate critical points that are embedded from narrow DNNs. The embedding principle provides an explanation for the general easy optimization of wide DNNs and unravels a potential implicit low-complexity regularization during the training. Overall, our work provides a skeleton for the study of loss landscape of DNNs and its implication, by which a more exact and comprehensive understanding can be anticipated in the near
Causal inference explores the causation between actions and the consequent rewards on a covariate set. Recently deep learning has achieved a remarkable performance in causal inference, but existing statistical theories cannot well explain such an empirical success, especially when the covariates are high-dimensional. Most theoretical results in causal inference are asymptotic, suffer from the curse of dimensionality, and only work for the finite-action scenario. To bridge such a gap between theory and practice, this paper studies doubly robust off-policy learning by deep neural networks. When the covariates lie on a low-dimensional manifold, we prove nonasymptotic regret bounds, which converge at a fast rate depending on the intrinsic dimension of the manifold. Our results cover both the finite- and continuous-action scenarios. Our theory shows that deep neural networks are adaptive to the low-dimensional geometric structures of the covariates, and partially explains the success of deep learning for causal inference.
102 - Jianfei Chen , Yu Gai , Zhewei Yao 2020
Fully quantized training (FQT), which uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model, is a promising approach to accelerate the training of deep neural networks. One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties. In this paper, we address this problem by presenting a statistical framework for analyzing FQT algorithms. We view the quantized gradient of FQT as a stochastic estimator of its full precision counterpart, a procedure known as quantization-aware training (QAT). We show that the FQT gradient is an unbiased estimator of the QAT gradient, and we discuss the impact of gradient quantization on its variance. Inspired by these theoretical results, we develop two novel gradient quantizers, and we show that these have smaller variance than the existing per-tensor quantizer. For training ResNet-50 on ImageNet, our 5-bit block Householder quantizer achieves only 0.5% validation accuracy loss relative to QAT, comparable to the existing INT8 baseline.
Miscalibration - a mismatch between a models confidence and its correctness - of Deep Neural Networks (DNNs) makes their predictions hard to rely on. Ideally, we want networks to be accurate, calibrated and confident. We show that, as opposed to the standard cross-entropy loss, focal loss [Lin et. al., 2017] allows us to learn models that are already very well calibrated. When combined with temperature scaling, whilst preserving accuracy, it yields state-of-the-art calibrated models. We provide a thorough analysis of the factors causing miscalibration, and use the insights we glean from this to justify the empirically excellent performance of focal loss. To facilitate the use of focal loss in practice, we also provide a principled approach to automatically select the hyperparameter involved in the loss function. We perform extensive experiments on a variety of computer vision and NLP datasets, and with a wide variety of network architectures, and show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases. Code is available at https://github.com/torrvision/focal_calibration.
Bayesian decision theory provides an elegant framework for acting optimally under uncertainty when tractable posterior distributions are available. Modern Bayesian models, however, typically involve intractable posteriors that are approximated with, potentially crude, surrogates. This difficulty has engendered loss-calibrated techniques that aim to learn posterior approximations that favor high-utility decisions. In this paper, focusing on Bayesian neural networks, we develop methods for correcting approximate posterior predictive distributions encouraging them to prefer high-utility decisions. In contrast to previous work, our approach is agnostic to the choice of the approximate inference algorithm, allows for efficient test time decision making through amortization, and empirically produces higher quality decisions. We demonstrate the effectiveness of our approach through controlled experiments spanning a diversity of tasks and datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا